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Whenever band-limited signals are measured or generated, different
distributions of a fixed number of receivers and transducers lead to very
different resolutions. A Closely related set of issues is encountered in

* the numerical solution of scattering problems: given a scatterer, one
would like to find nodes on its surface leading to most efficient discret-
izations. In this project, we have constructed numerical algorithms for
the determination of such discretizations in one, two, and three dimen-
sions, and used the obtained results for the design of optimal phased
antenna arrays. The work will be reported in four papers; copies of two

* of these papers are attached, and two are in preparation. Also, a
preliminary patent application has been submitted.
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1 Report

Whenever band-limited signals are measured or generated, the locations of receivers

or transducers have to be selected; it is well-known that different distributions lead to

very different resolutions given a fixed number of receivers or transducers. A closely

related set of issues is encountered in the numerical solution of scattering problems:

given a scatterer, one would like to find nodes on its surface leading to most efficient

discretizations.

During Phase I of the STTR project F49620-97-C-0052, we discovered (somewhat

serendipitously) that whenever band-limited signals are to be discretized, measured, or

generated, the construction of optimal (in a very strong sense) configurations of nodes

is a tractable problem. When the nodes are to be located on a line or on a disk in

R2 , the solution is a fairly straightforward consequence of classical results obtained by

Slepian and his collaborators more than 30 years ago. We have constructed the necessary

numerical tools, which are quite efficient; the resulting discretizations are a dramatic

improvement over the ones currently employed.

The basic analytical apparatus for dealing with band-limited functions are the clas-

sical Prolate Spheroidal Wave Functions (PSWFs) and their generalizations. We were

surprized to discover that the existing numerical tools for the evaluation of PSWFs leave

much to be desired, being based on the so-called Bouwkamp algorithm, constructed

in 1941 (see [1]). Indeed, a fairly straightforward analysis shows that the Bouwkamp

scheme is numerically unstable, except for small-scale problems; as a result, there ap-

pears to exist a belief (see, for example, [18]) that the numerical evaluation of PSWFs

presents severe numerical difficulties. When we examined the Bouwkamp algorithm, we

discovered that a very simple alteration eliminates the instability completely. In fact,

the required change is no more than the use of standard modern numerical techniques for

the solution of a fairly simple Sturm-Liouville problem. Needless to say, such techniques

did not exist in 1941, when C. J. Bouwkamp developed his scheme. In the process of de-

signing the requisite numerical tools, we discovered that the PSWFs posess an extremely



rich collection of analytical properties; we list some of these properties in [20], where we

also describe interpolation and quadrature techniques for band-limited functions.

Next, we applied the constructed apparatus to the design of configurations of trans-

* ducers for linear phased antenna arrays, and to antenna arrays on disks in the plane. This

work is reported in [19] (attached). Construction of optimal configurations of nodes on

more complicated regions requires additional mathematical apparatus; such apparatus

has been largely designed, and largely implemented numerically. The paper describing

it is in preparation. We are also investigating applications of the constructed numerical

techniques in the design of receiver configurations in seismic data collection (as encoun-

tered in oil exploration and related areas), electronic beam steering, and several other

* environments. A preliminary patent application has been filed by the Office of Cooper-

ative Research at Yale University.

2 Appendix: Antenna Patterns and Corresponding
* Optimal Element Distributions

2.1 Characteristics of an antenna pattern

* Depending on the situation, the design of an antenna array attempts to optimize certain

characteristics of the resulting far-field pattern, subject to certain constraints on the

number, power, etc. of the elements. Since the principal purpose of this work is to

develop a technique for the selection of the locations of the elements that approximate a

* user-specified pattern, we could use any reasonable far-field pattern to be approximated.

In subsection 2.2, 2.3, we construct optimal element distributions for the so-called sector

patterns and cosecant pattern, respectively; a detailed discussion of these (and several

* other) pattern cans be found, for example in [6].

We will say that the antenna pattern has the 6-bandwidth b if

1J IF(x) 12 dx ==62. J jF(x) 12 dx(1
b<IlxFI•1 -
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in other words, the proportion of the energy radiated outside the f-beamwidth from the

axis of the beam is equal to c. The supergain of an antenna is defined (see, for example,

[22]), as the ratio

f IF(x)12 dx- 00 (2)
1f IF(x)12 dx

-1

The supergain (sometimes referred to as superdirectivity) measures the ratio of the en-

ergy associated with the total spectrum of the antenna to the energy in its visible spec-

trum; while detailed discussion of supergain and related issues is outside the scope of this

report, we will observe that antenna arrays with large degrees of supergain would violate

the uncertainty principle, and thus are physically impossible. Attempts to construct

supergain antennae result in rapidly (exponentially) growing Ohmic losses, prohibitive

accuracy requirements, extremely low bandwidth, etc. Thus, any potentially useful pro-

cedure for the design of antenna arrays has to limit the supergain of the resulting patterns.

2.2 Sector patterns

It is often desirable to construct antenna patterns that are as constant as possible within

the main beam, and as small as possible outside it; in other words, ideally, the pattern

would be defined by the formulae

Fb(x)= 1 for Ix- <b, (3)

Fb(x) =O for Jxj > b, (4)

with b a real number such that 0 < b < k. Needless to say, the function Fb defined by

the formulae (3), (4) is not band-limited, and some approximation has to be used. A

standard procedure is to truncate the Fourier Transform of Fb, approximating it by the

function Fb defined by the formula

Fb(x) = sir(b. t) ei... (5)-1 t

3
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(see, for example, [21]). An important special case occurs when b = k, with (5) assuming

the form

Fk(X) siri(k . t) ei-k-x.t (6)

obviously, the latter expression is a band-limited approximation of the 6-function. An-

other frequently encountered situation is that of b = k/2, so that (5) assumes the form

Fk(X) j 1in(" t) . eikxt, (7)

which is a band-limited approximation to the beam that is equal to 1 for -1/2 < x < 1/2

and to zero elsewhere.

In Section 2.4 below, we demonstrate optimal element configurations that produce

approximations to the patterns (6), (7) with k = 20rr, 10r, 32.46767r.

Remark 2.1 While (5) is by no means the only possible band-limited approximations to

to Fb, it is quite satisfactory in most cases, in addition to being simple. Furthermore, the

principal purpose of this report is to describe a technique for the selection of locations of

the nodes, given a pattern to be approximated. Thus, we ignore the issue of the optimal

choice of Fb.

2.3 Cosecant patterns

Another standard far-field radiation pattern is the so-called cosecant pattern (see, for

example, [8]). Given two real numbers 0 < a < b < 1, the cosecant pattern Fa,b is defined

by the formula

Fa,b(X) - (8)

for all x G [a, b], and

Fa,b(X) = 0 (9)
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for all x c- ([-1, 1] \ [a, b]). Again, the function Fa,b defined by the formulae (8), (9)

is not band-limited. Before our scheme can be applied to Fa,,b, the latter has to be

approximated with a band-limited function; as discussed in Section 2.1 above, if such

* an approximation is to be useful as an antenna pattern, its supergain factor has to be

controlled. Fortunately, a procedure for such an approximation has been in existence for

more than 35 years (see, [7]); the algorithm of [7] is a modification of the least-squares ap-

proach permitting the user to limit the supergain factor of the obtained pattern explicitly.

At the time, the utility of the scheme of [7] was limited by the (perceived) difficulty in

the numerical evaluation of Prolate Spheroidal Wave functions; given the present state

of numerical analysis, this difficulty is non-existent, and it is this author's impression

that the insights of [7], [8] deserve more attention than they have been receiving.

2.4 Optimal distributions of elements

In this subsection, we briefly describe an algorithm for the construction of optimal (in

the sense defined below) element configurations for the generation of antenna patterns,

of which the patterns (4)-(6) are special cases. As will be seen, the procedure is in fact

applicable to the design of element configurations for very general far-field patterns.

0 We start with observing that the far-field pattern F is an integral over the interval

[-1, 1] of functions of the form

0,(u) -eiku (10)

with x =eos(O) determined by the direction 0 in which the far-field is being evaluated. In

other words, the problem of finding efficient antenna element distributions is equivalent to

that of constructing quadrature formulae for functions of the form (10). In our numerical

0experiments, the techniques of [2]) (after some tuning) have always been successful in

finding the Gaussian quadratures for integrals of the form (3); some of our results are

presented in Section 3 below.
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* 3 Numerical Examples

In this section, we present examples of optimal element distributions generating the

patterns of the preceding Section; all of the results presented here have been obtained

* numerically. Antenna patterns we present are compared to the antenna patterns given

by uniform source distributions; configurations of elements approximating these antenna

patterns are compared to equispaced distributions of elements generating the same an-

tenna patterns.

3.1 Optimal distributions of elements

In this section, we demonstrate the results of the application of the techniques of Sec-

* tion 2.4 of this report to the types of antenna patterns described in the Sections 2.2, 2.3.

In all cases, we choose the size of an antenna array and a pattern to be reproduced, and

use the scheme outlined in Section 2.4 to design a distribution of antenna elements (both

the locations and the intensities) located within the chosen array that reproduces the

0 required pattern. For comparison, we also generate optimal (in the least squares sense)

approximations to the desired pattern generated by equispaced elements located within

the same array. Since the number of equispaced nodes required to obtain a reasonable

approximation to the desired pattern is (in many cases) much greater than the number of

optimally chosen nodes, for each example we demonstrate patterns generated by several

such configurations. In this manner, the numbers of optimally chosen nodes necessary

to obtain reasonable approximations to the desired patterns can be compared to the

* numbers of equispaced nodes required to obtain similar results.

3.1.1 Sector patterns

Example 3.1 The first example we consider is of the pattern defined by the formula (7),

0 with k = 62.8312, so that the size of the array is 20 wavelengths.

In Figure 5, we display an approximation to the pattern obtained with 19 elements,

overlayed with the exact pattern; the locations of the elements are displayed in Figure 5a;

the relative error of the obtained approximation is 5.01%.
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Similarly, in Figure 5g, we display the approximation to the pattern obtained with 21

elements, overlayed with the exact pattern; the relative error of the obtained approxima-

tion is 0.443%; in Figure 5h, we display the the approximation obtained with 17 elements.

In the latter case, the relative error of the obtained approximation is 6.43%; Figure 5i

depicts the 17-node distribution producing the approximation illustrated in Figure 5h.

Finally, Figure 5j contains a graph of the values of the sources located at the 17 nodes

depicted in Figure 5i and generating the pattern shown in Figure 5h.

40 For comparison, the optimal approximation obtained with 19, 24, 29, 31, and 34

equispaced elements are displayed in Figures 5b, 5c, 5d, 5e, 5f, respectively; these are

also overlayed with the exact pattern.

* Example 3.2 Our second example is identical to the first one, with the exception that

k = 31.416, so that the size of the array is 10 wavelengths.

In Figure 6, we display an approximation to the pattern obtained with 9 elements,

overlayed with the exact pattern; the locations of the elements are displayed in Figure 6a;

the relative error of the obtained approximation is 11.2%.

Similarly, in Figure 6f, we display the approximation to the pattern obtained with 11

elements, overlayed with the exact pattern; the relative error of the obtained approxima-

tion is 0.600%.

For comparison, the optimal approximation obtained with 9, 14, 16, and 18 equispaced

elements are displayed in Figures 6b, 6c, 6d, 5e, respectively; these are also overlayed

with the exact pattern.

Example 3.3 Our third example is identical to the preceding two, with the exception

that k = 102, so that the size of the array is about 32.45 wavelengths.

In Figure 7a, we display an approximation to the pattern obtained with 23 optimally

distributed elements, overlayed with the exact pattern and with the pattern obtained with

23 equispaced elements.

The relative error of the obtained approximation is 5.4%; needless to say, the error of

the approximation obtained with the equispaced nodes is more than 70%. As can be seen
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from Figure 7c, the actual size of the obtained 23-element array is about 21 wavelengths;

in other words, in order to obtain this precision, the array needs to be about 2/3 of the

nominal (maximum permitted) length.

In Figure 7b, we display the approximation to the pattern obtained with 42 and 48

elements, overlayed with the exact pattern.

It is worth noting that with 33 optimally distributed elements, the pattern is approxi-

mated to the precision 0.12%; we do not display the obtained pattern since it is visually

indistinguishable from the pattern being approximated.

Example 3.4 Our final example is somewhat different from the preceding ones, in that

instead of approximating a sector pattern, we approximate a cosecant pattern (see (8), (9)

in Subsection 2.3 above).

In this example, we set

a = sin(15°), (11)

b = sin(75°), (12)

and use the procedure of [7] to approximate Fa,b with a band-limited function. The band-

limit has been more or less arbitrarily set to 110, resulting in an antenna array about 35

wavelengths in size, and the supergain factor of the approximation was set to 1.1.

In Figure 8a, we display an approximation to the pattern obtained with 53 optimally

distributed elements, overlayed with the exact bandlimited pattern and with the pattern

obtained with 53 equispaced elements.

The relative error of the obtained approximation is 1.79%; the error of the approxi-

mation obtained with the equispaced nodes is about 42%.

In Figure 8b, we display the approximation to the pattern obtained with 47 optimally

distributed elements, overlayed with the exact pattern; the purpose of this final figure is

to demonstrate the behavior of the scheme when the number of elements is insufficient

(i.e. when the array is underresolved).

It is worth noting that it takes about 70 equispaced nodes to obtain the resolution

obtained with 47 optimally chosen ones.
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0 The following observations can be made from Figures 5 - 8b, and from the more

detailed numerical experiments performed by the author.

1. In order to obtain reasonable precision, the scheme requires about 1 point per wave-

* length in the antenna array; this is more or less independent from the structure of the

beam as long as the pattern is symmetric about the point x =0. This fact is observed

numerically, even for modest numbers of nodes; for large-scale arrays, this statement

(interpreted asymptotically) can be proved rigorously. For certain beam structures, the

0 required number of nodes is even less (see Example 3.3). The reasons for these additional

savings are subtle, and have to do with the fact that the continuous source distribution

generating the pattern is relatively small on a large part of the antenna array; the al-

gorithm of [2] takes advantage of this fact to reduce the number of nodes. When the

beam is not symmetric about x =0, the number of elements required does depend on

the structure of the pattern, and the dependence is fairly complicated. Generally, the

improvement for non-symmetric beams is less than that for the symmetric ones.

0 2. The qualiative behavior of the scheme is similar to that of the Gaussian quadratures

in that it displays no convergence at all until a certain minimum number of nodes is

achieved; after that, the convergence is very fast. This behavior is not surprising, since

0 the scheme is based on a Generalized Gaussian quadrature.

3. For the sector pattern with the sector [-1/2, 1/21, the scheme reduces the required

number of nodes by a factor of about 1.5 for small-scale problems, and roughly by a

factor of 2 for large-scale ones; again, for large-scale problems, an asymptotic version of

0 this statement can be proven rigorously.

4. For the cosecant pattern with the parameters specified by (11), (12), the number

of nodes required is reduced by approximately a factor of 1.4. As the sidelobe level is

0 reduced, the improvement obtained by going from the equispaced discretization to the

optimal one increases rapidly.

5. An examination of Figures 5a, 6a shows that while the optimal nodes are by no means

0 uniform, they display no clustering behavior.
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6. An examination of Figure 5j shows that the intensities of individual elements do not

become large; this is confirmed by the more extensive numerical experiments performed

by the author.

7. The combination of the preceding two paragraphs (combined with additional numer-

ical experiments and analysis) provide evidence that configurations of this type should

pose no supergain problems.

0
4 Generalizations

The results described above admit radical generalizations in several directions; several

0 such directions are discussed below,

1. Conformal one-dimensional arrays. The extension of the techniques of this report

to one-dimensional arrays located on curves in R'3 is completely straightforward, involving

* only a modest increase of the CPU time requirements of the procedure. Improvement in

the number of nodes required to produce a prescribed pattern is similar to that in the

case of a linear array.

0 2. Planar two-dimensional arrays. A straightforward generalization of the results of

Sections 2, 3, is to rectangular planar arrays. Here, a tensor product quadrature can be

constructed from the quadratures of Sections 2, 3, possessing all of the desirable prop-

erties of the latter. Obviously, the advantage in the number of transducers is squared,

0 so that (for example) replacing 50 nodes in each of the two directions by 23 nodes (see

Example 3.3 above) will lead to a factor of (50/23)2 '-' 4.7 savings in the number of

elements.

* The theory of Section 2 has been extended for disk-shaped arrays, via (inter alia) the

techniques developed in [12]. The improvement in the number of nodes is comparable to

that obtained in the rectangular geometry, and the CPU time requirements do not differ

appreciably from those in the case of linear one-dimensional arrays.
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The extension of the theory to more general geometries in the plane is in progress. At

the present time, our only numerical experiments have been with arrays on triangles; the

results are encouraging, but the CPU time requirements of the algorithms are excessive

* (we have only been able to design triangular arrays about 6 wavelengths in size). We

are now in the process of constructing a more efficient numerical procedure for such

computations.

* 3. Conformal two-dimensional arrays. The only environment in which we have

a satisfactory theory is when the array is located on a surface of revolution; even in

this environment, no experiments have been performed. We have not investigated more

general conformal two-dimensional arrays in sufficient detail.
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Figure 5: The pattern created by the 19 optimal elements, depicted in Figure
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Figure 5b: The optimal approximation to the sector pattern generated by 19

equispaced nodes, as described in Example 3.1
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equispaced nodes, as described in Example 3.1
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Figure 5d: The optimal approximation to the sector pattern generated by 29

equispaced nodes, as described in Example 3.1
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Figure 5f: The optimal approximation to the sector pattern generated by 34
equispaced nodes, as described in Example 3.1
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Figure 5h: The optimal approximation to the sector pattern generated by 17
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Figure 5h, as described in Example 3.1
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Figure 5j: The values of the sources located at the nodes depicted in Figure 5i

and generating the pattern depicted in Figure 5h, as described in Example 3.1
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Figure 6: The pattern created by the 9 optimal elements, depicted in Figure

6a as described in Example 3.2
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Figure 6a: The distribution of elements creating the pattern depicted in
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Figure 6b: The optimal approximation to the sector pattern generated by 9

equispaced nodes, as described in Example 3.2
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Figure 6c: The optimal approximation to the sector pattern generated by 14

equispaced nodes, as described in Example 3.2
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Figure 6d: The optimal approximation to the sector pattern generated by 16
equispaced nodes, as described in Example 3.2
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Figure 7a: The approximation to the sector pattern generated by 23 optimal

elements, vs. optimal approximation by 23 equispaced nodes, as described in

Example 3.3
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Figure 7b: The optimal approximations to the sector pattern generated by 42
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Figure 8a: The approximation to the cosecant pattern generated by 53
0

optimal elements, vs. optimal approximation by 53 equispaced nodes, as

described in Example 3.4
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Figure 8a: The approximation to the cosecant pattern generated by 47
optimal elements, as described in Example 3.4

23



References

[1] C.J. Bouwkamp, Diffraction Through a Circular Aperture; Acoustic Radiation of a

Freely Vibrating Circular Plate, Thesis Groningen 1941.

[2] H. Cheng, N. Yarvin, V. Rokhlin, Non-Linear Optimization, Quadrature, and Inter-

polation, Yale University Technical Report, YALEU/DCS/RR-1169, 1998, to appear

in the SIAM Journal of Non-linear Optimization.

[3] H.J. Landau, H. Widom, Eigenvalue Distribution of Time and Frequency Limiting,

Journal of Mathematical Analysis and Applications, 77, 469-481 (1980).

[4] Y.T. Lo, S.W. Lee, editors, Antenna Handbook, Theory, Applications, and Design,

Van Nostrand Reinhold Company, 1988.

[5] J. MA, V. ROKHLIN, AND S. WANDZURA, Generalized Gaussian Quadratures For

Systems of Arbitrary Functions, SIAM Journal of Numerical Analysis, v. 33, No. 3,

pp. 971-996, 1996.

[6] R.J. Mailloux, Phased Array Antenna Handbook, Artech House, 1994.

[7] D. Rhodes, The optimum line source for the best mean-square approximation to a

given radiation pattern, IEEE Trans. AP, July 1963.

[8] D. Rhodes, Synthesis of planar antenna sources, Clarendon Press, Oxford, 1974.

[9] D. Slepian, H.O. Pollak, Prolate Spheroidal Wave Functions, Fourier Analysis, and

Uncertainty - 1, The Bell System Technical Journal, January 1961.

[10] H.J. Landau, H.O. Pollak, Prolate Spheroidal Wave Functions, Fourier Analysis,

and Uncertainty - II, The Bell System Technical Journal, January 1961.

[11] H.J. Landau, H.O. Pollak, Prolate Spheroidal Wave Functions, Fourier Analysis,

and Uncertainty - III: The Dimension of Space of Essentially Time- and Band-

Limited Signals, The Bell System Technical Journal, July 1962.

24



[12] D. Slepian, Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty

- IV: Extensions to Many Dimensions, Generalized Prolate Spheroidal Wave Func-

tions, The Bell System Technical Journal, November 1964.

[13] D. Slepian, Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty

- V: The Discrete Case, The Bell System Technical Journal, May-June 1978.

[14] D. Slepian, Some Comments on Fourier Analysis, Uncertainty, and Modeling SIAM

Review, V. 25, No. 3, July 1983.

[15] F. A. Griinbaum, Toeplitz Matrices Commuting With Tridiagonal Matrices, J. Lin-
ear Alg. and Appl., 40, (1981).

[16] F. A. Griinbaum, Eigenvectors of a Toeplitz Matrix: Discrete Version of the Prolate

Spheroidal Wave Functions, SIAM J. Alg. Disc. Meth., 2(1981).

[17] F. A. Griinbaum, L. Longhi, M. Perlstadt, Differential Operators Commuting with

Finite Convolution Integral Operators: Some Non-Abelian Examples, SIAM J. Appl.

Math. 42(1982).

[18] D.J. Brown, R.M. Stringfield, Iterative Methods Applied to Matrix Equations Found

in Calculating Spheroidal Functions, Journal of Computational Physics, 159, 329-

343 (2000).

[19] V. Rokhlin, A Procedure for the Design of Apparata for the Measurement

and Generation of Band-Limited Signals, Yale University Technical Report,

YALEU/DCS/RR-1196, 2000.

[20] H. Xiao, V. Rokhlin, N. Yarvin, Prolate Spheroidal Wave Functions, Quadratures,

and Interpolation, Yale University Technical Report, YALEU/DCS/RR-1199, 2000.

[21] W.L. Stutzman, G.A. Thiele, Antenna Theory and Design, Wiley, 1998.

25



[22] T.T. Taylor, Design of Line-Source Antennas for Narrow Beamwidth and Low Side

Lobes, IEEE Trans. on Antennas and Propagation, AP-3, pp. 16-28, 1955.

[23] N. Yarvin and V. Rokhlin, Generalized Gaussian Quadratures and Singular Value

Decompositions of Integral Operators, SIAM Journal of Scientific Computing, Vol.

20, No. 2, pp. 699-718 (1998).

26



Personnel Supported:

F.M.A.& H. Corporation

Vladimir Rokhlin, Ph.D., Vice President of FMA&H
Ronald Coifman, Ph. D., President of FMA&H
Frank Geshwind, Ph.D.

0 Hongwei Cheng, Ph.D.
Tomasz Hrycak, Ph.D.
Yu Chen, Ph.D.

Yale University

Norman Yarvin, Ph.D.
Petter Kolm, Ph.D.
Hong Xiao, Ph.D.

27



WIn
'-xET VERI S

A Procedure for the Design of Apparata for the

Measurement and Generation of Band-Limited Signals

V. Rokhlin
Research Report YALEU/DCS/RR-1196

March 29, 2000

YALE UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE



Whenever physical signals are measured or generated, the locations of receivers or trans-
ducers have to be selected. Most of the time, this appears to be done on an ad hoc basis.
For example, when a string of geophones is used in the measurements of seismic data in
oil exploration, the receivers are located at equispaced points on an interval. When phased
array antennae are constructed, their shapes are determined by certain aperture consid-
erations; round and rectangular shapes are common. When antenna beams are steered
electronically, it is done by changing the phases (and sometimes, the amplitudes) of the
transducers. Again, these transducers are located in a region of predetermined geometry,
and their actual locations within that geometry are chosen via some heuristic procedure.
In all these (and many other) cases, the signals being received or generated are band-limited.
Optimal representation of such signals has been studied in detail by Slepian et. al. more
than 30 years ago, and some of the obtained results were applied by D. Rhodes to the
design of antenna patterns; further development of this line of research appears to have
been hindered by the absence at the time of necessary numerical tools. We combine these
classical results with the recently developed apparatus of Generalized Gaussian Quadratures
to construct optimal nodes for the measurement and generation of band-limited signals. In
this report, we describe the procedure based on these techniques for the design of such
receiver (and transducer) configurations in a variety of environments.
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S1 Introduction

When measurements are performed, it often happens that the signal to be measured is

well approximated by linear combinations of oscillatory exponentials, i.e. functions of

the form

n

Y ei'' (1)
j=1

in one dimension, of the form

n

Zoz . ei(Aj.X+±'y) (2)
j=1

in two dimensions, and of the form

e . ei.(A3 .x+gi.y+vj.z) (3)
j=1

in three dimensions. In most cases, the signal is band-limited, i.e. there exist such real

positive a that all 1 < j < n,

1 Aj•,< a (4)

in one dimension,

A2 + 2 <a 2  (5)

in two dimensions, and

A 2+ + V<a 2  (6)

in three dimensions.

As is well-known, most measurements of electromagnetic and acoustic data (espe-

cially at reasonably high frequencies) are of this form. Examples of such situations

include geophone and hydrophone strings in geophysics, phased array antennae in radar



systems, multiple transceivers in ultrasound imaging, and a number of other applications

in astrophysics, medical imaging, non-destructive testing, etc.

In this report, we describe a procedure for determining the optimal distribution of

sources and receivers that maximizes accuracy and resolution in measuring band-limited

data given a fixed number of receivers. Alternatively, the procedure can be used to

determine the optimal distribution of receivers that will minimize their number given

specified accuracy and resolution. While the techniques described in this note are fairly

general, we describe them in detail in the case of linear antenna arrays; the changes

needed to generalize the approach to other cases are summarized in Section 6.

Remark 1.1 One of principal issues in the design of antenna arrays is the treatment

(or avoidance) of the so-called supergain (or superdirectivity). Supergain is the con-

dition that occurs when an antenna design is attempted that is prohibited (or nearly

prohibited) by the Heisenberg principle; technically, it occurs in the form of very closely

spaced elements operating out of phaze, and leads to prohibitive Ohmic losses in trans-

mitting antennae, loss of sensitivity in receiving ones, etc. Since the purpose of this

note is to introduce techniques for selecting the locations of elements for a prescribed

antenna pattern, we avoid the issue of choosing the antenna pattern altogether. Instead,

we observe design optimal element distributions for several standard far-field patterns

(see Section 5.1), and we observe that the scheme for choosing optimal distributions of

elements is virtually independent of the patterns being approximated.

Technically, the approach taken here is to observe that designing an antenna array

can be viewed as constructing a quadrature formula for the integration of certain special

classes of functions. Using recently developed techniques for the construction of so-called

Generalized Gaussian Quadratures, we obtain both nodes and weights that are optimal

(in a very strong sense) for the required antenna pattern.

The structure of this note is as follows. In Section 2, we summarize some of the math-

ematical apparatus to be used: Chebychev Systems, Generalized Gaussian Quadratures,
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etc. In Section 3, we recapitulate some of the standard antenna theory, primarily to

introduce the necessary notation. In Section 4, element distributions given a specific an-

tenna pattern. In Section 5, we illustrate our approach with several numerical examples,

and Section 6 contains a discussion of the generality of the schemes presented.

2 Analytical Preliminaries

In this section, we summarize several known facts about classical Special functions. All

of these facts can be found in the literature; detailed references are given in the text.

2.1 Chebyshev systems

Definition 2.1 A sequence of functions O1,-.. , , will be referred to as a Chebyshev

system on the interval [a, b] if each of them is continuous and the determinant

1(x1) ""... 1(xn)

* •(7)
On.l ... On( . n)

is nonzero for any sequence of points x 1 , ... ,x, such that a < x, < x 2 ... < xn < b.

An alternate definition of a Chebyshev system is that any linear combination of the

functions with nonzero coefficients must have no more than n zeros.

Examples of Chebyshev and extended Chebyshev systems include the following (ad-

ditional examples can be found in [8]).

Example 2.1 The powers 1,x,x 2,. .. ,xn' form an extended Chebyshev system on the

interval (->o, cc).

Example 2.2 The exponentials e-lx, e-x.,... , e-A, form an extended Chebyshev sys-

tem for any A1,..., An, > 0 on the interval [0, oo).

Example 2.3 The functions 1, cos x, sin x, cos 2x, sin 2x,..., cos nx, sin nx form a Cheby-

shev system on the interval [0, 27r].

3
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Example 2.4 Suppose that c > 0 is a real number, w is a positive function [-1, 1] -+ R

such that w 2 c'[-1, 1] and w(-x) = w(x) for all x E [-1, 1], n is a natural number,

and the operators P, Q: L 2[_1, 11] -+ L 2 [-1, 1] are defined by the formulae

P )) f w(t) eicXt . (t) dt (8)

Q = P* oP. (9)

Suppose further that q 1, 0 2,... are the eigenfunctions of Q, A1 , A2 .... are the corre-

sponding eigenvalues, and A, > A2 > A3 .... Then all eigenfunctions of Q (also known

as the right singular vectors of P) can be chosen to be real. Furthermore, the functions

01, 0 2 ,., On constitute a Chebychev system on the interval [-1, 1].

2.2 Generalized Gaussian quadratures

A quadrature rule is an expression of the form
n

E wj . q(xj), (10)
j=1

where the points xj c R and coefficients wj E R are referred to as the nodes and weights

of the quadrature, respectively. They serve as approximations to integrals of the form
jb (x).w(x)dx (11)

with w is an integrable non-negative function.

Quadratures are typically chosen so that the quadrature (10) is equal to the desired

integral (11) for some set of functions, commonly polynomials of some fixed order. Of

these, the classical Gaussian quadrature rules consist of n nodes and integrate polynomi- S

als of order 2n - 1 exactly. In [13], the notion of a Gaussian quadrature was generalized

as follows:

Definition 2.2 A quadrature formula will be referred to as Gaussian with respect to a

set of 2n functions 01,.. ., 02n " [a, b] --+ R and a weight function w : [a, b] -- R+, if it

consists of n weights and nodes, and integrates the functions qi exactly with the weight

function w for all i = 1,..., 2n. The weights and nodes of a Gaussian quadrature will be

referred to as Gaussian weights and nodes respectively. 0
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The following theorem appears to be due to Markov [15, 16]; proofs of it can also be

found in [10] and [8] (ina somewhat different form).

Theorem 2.1 Suppose that the functions 01, .0.,2 : [a, b] -ý R form a Chebyshev

system on [a, b]. Suppose in addition that w [a, b] -+ R is a non-negative integrable

function [a, b] --+ R. Then there exists a unique Gaussian quadrature for the functions

1,... 2 on [a, b] with respect to the weight function w. The weights of this quadrature

are positive.

Remark 2.1 While the existence of Generalized Gaussian Quadratures was observed

more than 100 years ago, the constructions found in [15, 16], [3, 10], [7, 8] do not easily

yield numerical algorithms for the design of such quadrature formulae; such algorithms

have been constructed recently (see [13, 28, 2]). The version of the procedure found in

[2] was used to produce the results presented in the Examples 5.1, 5.2, 5.3 in Section 5.1;

the reader is referred to [2] for details.

Applying Theorem 2.1 to the Example 2.4, we obtain the following theorem.

Theorem 2.2 Suppose that under the conditions of Example 2.4, n is even. Then

there exist n/2 points t1 , t2 ,. .. tn/2 on the interval [-1, 1] and positive real numbers

W, W2, • ,w/2 such that

1 n/2

f w(t) . qi (t) dt Ewj . Oi(tj), (12)
-1 j=1

for all i = 1, 2,.'.., n, with ¢, 02,.-. On the first n eigenfunctions of the operator Q

defined in (9).

Corollary 2.3 The above theorem provides a tool for the efficient approximate evalua-

tion of integrals of the form (12), as follows. Given a positive real c, we construct the

5



Singular Value Decomposition of the operator P defined in (8). Choosing n to be the

smallest even integer such that
00

Ej ýA 2 < 2  (13)
j~n+l

we construct an n/2-point quadrature that integrates n first right singular functions ex-

actly (effective numerical schemes for the construction of such quadratures can be found

in [13, 28, 2]). Now, we observe that due to the triangle inequality combined with the

positivity of the obtained weights w1, w2, ... Wn/2,

n/2 1

S wj ei-c'xti - f w(x).- 'C"t dt < f (14)
j=1 -1 0

for any x E [-1,1].

Remark 2.2 The principal subject of this note is the fact that the pattern of an antenna

array is formed by a physical process amounting to a hardware implementation of a

quadrature formula for functions of the form (9). Thus, designing a configuration of

elements for such an antenna is equivalent to constructing a quadrature formula for

functions of the form( 9), and can be achieved via the techniques described in [13, 28, 2]).

3 Elements of Antenna Theory

In this section, we summarize certain facts about the theory of linear antenna arrays; all

of these facts are well-known, and can be found, for example, in [9].•

3.1 Pattern of a linear array

A source distribution a on the interval [-1, 1] creates the far-field pattern f : [0, 7r] -± @

given by the formula
1

f(O) = J (u) . ei'k-u•s() du, (15)
-1J 6

6
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where k is the free-space wavenumber, u is the point on the interval [-1, 1], and 0 is the

angle between the point on the horizon where the far field is being evaluated and the

x-axis. It is customary to introduce the notation

x = cos(O), (16)

and define the function F : [-1, 1] --+ C by the formula

F(x) = f(acos(x)). (17)

Now, defining the operator A : L 2 [-1, 1] --+ L2 [-1, 1] by the formula

1

A(a)(x) = J u(u) eik'ux du, (18)
-1

we observe that
1

F = A(a) J 0 a(u). eikux du. (19)
0 -1

The function F is usually more convenient to work with than f, and the following obvious

lemma is the principal reason for this difference.

Lemma 3.1 Suppose that a C L 2 [-1, 1], the function F E L 2[-1, 1] is defined by (19),

a' is a real number, and the function & E L 2 [-1, 1] is defined by the formula

&(u) - e2'Q o(u). (20)

Then

A(&)(x) A(u)(x - a) (21)

for all x E (-co, co). In other words, in order to translate the antenna pattern F (viewed

as a function of x = cos(O) ) by a, one has to multiply by eiok the source distribution o

generating the pattern F.

7



Observation 3.1 While the obvious physical considerations lead to the antenna pattern.

F defined on the interval [-1, 1], the formulae (15), (17) also define naturally the exten-

sion of F to the function JR -* C; in a mild abuse of notation, we will be denoting by F

both the original mapping [-1, 1] -+ C and its extension to the mapping R -+ C. Simi-

larly, we will be denoting by A both the operator L2 [-1, 1] -+ L 2[-1, 1] defined by (18)

and its natural extension mapping L 2 [-1, 1] -4 c- (R). The restriction of F on R\[-1, 1]

is referred to as the invisible spectrum of the source distribution o and plays an important

role in the antenna theory (this role is discussed briefly in the following subsection). By

the same token, the restriction of F on the interval [-1, 1] is referred to as the visible

spectrum.

When an antenna array is implemented in hardware, it is (usually) constructed of

a finite collection of elements, as opposed to being a continuous source distribution.

Mathematically, it is equivalent to replacing the general function o in (15), (19) with a

defined by the expression

n

0, W ZE . ejq(u), (22)
j=1

with .1, 2,. . . , n the source distributions generated by individual elements, and the

coefficients i01, 02,..., 3n the intensities of the elements. As a rule, the elements are

localized in space (i.e. the functions 01, 0 2 , .. . , On are supported on small subintervals

of [-1, 1]), and very often, all of the elements are identical (i.e. the functions ej are

translates of each other), so that

0j (u) = ¢(U - uj), (23)

with ¢ the source distribution of a single element located at the point u = 0, and uj the

location of the element number j. Obviously, the far-field pattern of ¢ is given by the

formula
1

F0(x) =J (u)- eik-ux du; (24)
--1

8
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combining (24) with (22) and (23), we obtain the identity

1 nu(x) = J k(u). eikux du. > fij ei.kujx, (5U() o u p (25)
j=1

known in the antenna theory as the principle of pattern multiplication.

Remark 3.2 The standard form of the principle of multiplication reads: "The field

pattern of an array of nonisotropic but similar point sources is the product of the pattern

of the individual source and the the pattern of an array of isotropic point sources, having

the same locations, relative amplitudes and phases as the nonisotropic point sources" (see

[9]). Needless to say, this is a special case of the well-known theorem from the theory of

* the Fourier Transform, stating that the Fourier transform of the product of two functions

is the convolution of the Fourier Transforms of multiplicants.

4 Antenna Patterns and Corresponding Optimal El-
ement Distributions

4.1 Characteristics of an antenna pattern

Depending on the situation, the design of an antenna array attempts to optimize certain

characteristics of the resulting far-field pattern, subject to certain constraints on the

number, power, etc. of the elements. Since the principal purpose of this note is to

describe a technique for the selection of the locations of the elements that approximate a

user-specified pattern, we could use any reasonable far-field pattern to be approximated.

In subsection 4.2, 4.3, we construct optimal element distributions for the so-called sector

patterns and cosecant pattern, respectively; a detailed discussion of these (and several

* other) pattern cans be found, for example in [14].

We will say that the antenna pattern has the e-bandwidth b if

1

f I~x• F(x)l 2 dx = / IF(x) 12 dx (26)b_<llxll_<l -

9



in other words, the proportion of the energy radiated outside the 6-beamwidth from the

axis of the beam is equal to c. The supergain of an antenna is defined (see, for example,

[27]), as the ratio
+00 1f IF(x)2 dx

-00 (27)
f IF(x)12 dx
--1

The supergain (sometimes referred to as superdirectiyvity) measures the ratio of the en-

ergy associated with the total spectrum of the antenna to the energy in its visible spec-

trum; while detailed discussion of supergain and related issues is outside the scope of this

note, we will observe that antenna arrays with large degrees of supergain would violate

the uncertainty principle, and thus are physically impossible. Attempts to construct 0

supergain antennae result in rapidly (exponentially) growing Ohmic losses, prohibitive

accuracy requirements, extremely low bandwidth, etc. Thus, any potentially useful pro-

cedure for the design of antenna arrays has to limit the supergain of the resulting patterns.

4.2 Sector patterns

It is often desirable to construct antenna patterns that are as constant as possible within

the main beam, and as small as possible outside it; in other words, ideally, the pattern 0

would be defined by the formulae

Fb(x) = 1 for Ix < b, (28)

0
Fb(x)= O for Ixl >b, (29)

with b a real number such that 0 < b < k. Needless to say, the function Fb defined by

the formulae (28), (29) is not band-limited, and some approximation has to be used. A

standard procedure is to truncate the Fourier Transform of Fb, approximating it by the

function Eb defined by the formula

F6 (x) J= flsin(b , t) ei.k..t (30)

10
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(see, for example, [26]). An important special case occurs when b = k, with (30) assuming

the form

* Fk(x) =j sin(k, t) eikz.; (31)

obviously, the latter expression is a band-limited approximation of the 6-function. An-

other frequently encountered situation is that of b = k/2, so that (30) assumes the form

Fk (X) = j -. t eik.t, (32)

which is a band-limited approximation to the beam that is equal to 1 for -1/2 < x < 1/2

and to zero elsewhere.

In Section 4.4 below, we demonstrate optimal element configurations that produce

approximations to the patterns (31), (32) with k = 20r, 10r, 32.4676-.

Remark 4.1 While (30) is by no means the only possible band-limited approximations

to to Fb, it is quite satisfactory in most cases, in addition to being simple. Furthermore,

the principal purpose of this note is to describe a technique for the selection of locations

of the nodes, given a pattern to be approximated. Thus, we ignore the issue of the

optimal choice of Fb.

4.3 Cosecant patterns

Another standard far-field radiation pattern is the so-called cosecant pattern (see, for

example, [19]). Given two real numbers 0 < a < b < 1, the cosecant pattern Fa,b is

defined by the formula

Fa,b(X) - 1 (33)x

for all x G [a, b], and

Fab(X) = 0 (34)

11



0

for all x E ([-1, 1] \ [a, b]). Again, the function Fa,b defined by the formulae (33), (34) is

not band-limited, and can not be represented by the expression of the form (24). Before

the scheme of this note can be applied to Fa,b, the latter has to be approximated with a

band-limited function; as discussed in Section 4.1 above, if such an approximation is to

be useful as an antenna pattern, its supergain factor has to be controlled. Fortunately,

a procedure for such an approximation has been in existence for more than 35 years

(see, [18]); the algorithm of [18] is a modification of the least-squares approach permitting

the user to limit the supergain factor of the obtained pattern explicitly. At the time, the

utility of the scheme of [18] was limited by the '(perceived) difficulty in the numerical

evaluation of Prolate Spheroidal Wave functions; given the present state of numerical

analysis, this difficulty is non-existent, and it is this author's impression that the insights

of [18], [19] deserve more attention than they have been receiving.

4.4 Optimal distributions of elements

In this subsection, we briefly describe an algorithm for the construction of optimal (in

the sense defined below) element configurations for the generation of antenna patterns

given by (15), of which the patterns (29)-(31) are special cases. As will be seen, the

procedure is in fact applicable to the design of element configurations for very general

far-field patterns.

We start with observing that (15) expresses the far-field pattern F as an integral over

the interval [-1, 1] of functions of the form

U(u) . eikxu, (35)

with x = cos(O) determined by the direction 0 in which the far-field is being evaluated. In

other words, the problem of finding efficient antenna element distributions is equivalent

to that of constructing quadrature formulae for integrals of the form (8), with

w(t) = U(t). (36)

12

0



* In the cases when a is non-negative everywhere on the interval [-1, 1], Theorem 2.2

guarantees the existence of Generalized Gaussian Quadratures, and [13, 28]) provide a

satisfactory numerical apparatus for the construction of such quadratures. Obviously, the

patterns given by the formula (28) are not generated by non-negative source distributions,

except when

b< 7r. (37)

* Thus, for these (and many other) patterns, the conditions of Theorem 2.2 are violated,

and the existence of Generalized Gaussian Quadratures is not guaranteed. In our numer-

ical experiments, the techniques of [2]) (after some tuning) have always been successful

in finding the Gaussian quadratures for integrals of the form (28); some of our results

are presented in Section 5 below.

5 Numerical Examples

In this section, we present examples of optimal element distributions generating the

patterns of the preceding Section; all of the results presented here have been obtained

numerically. Antenna patterns we present are compared to the antenna patterns given

* by uniform source distributions; configurations of elements approximating these antenna

patterns are compared to equispaced distributions of elements generating the same an-

tenna patterns.

* 5.1 Optimal distributions of elements

In this section, we demonstrate the results of the application of the techniques of Sec-

tion 4.4 of this note to the types of antenna patterns described in the Sections 4.2, 4.3.

* In all cases, we choose the size of an antenna array and a pattern to be reproduced, and

use the scheme outlined in Section 4.4 to design a distribution of antenna elements (both

the locations and the intensities) located within the chosen array that reproduces the

required pattern. For comparison, we also generate optimal (in the least squares sense)

13



approximations to the desired pattern generated by equispaced elements located within

the same array. Since the number of equispaced nodes required to obtain a reasonable

approximation to the desired pattern is (in many cases) much greater than the number of

optimally chosen nodes, for each example we demonstrate patterns generated by several 0

such configurations. In this manner, the numbers of optimally chosen nodes necessary

to obtain reasonable approximations to the desired patterns can be compared to the

numbers of equispaced nodes required to obtain similar results.

5.1.1 Sector patterns

Example 5.1 The first example we consider is of the pattern defined by the formula (32),

with k = 62.8312, so that the size of the array is 20 wavelengths. 0

In Figure 5, we display an approximation to the pattern obtained with 19 elements,

overlayed with the exact pattern; the locations of the elements are displayed in Figure 5a;

the relative error of the obtained approximation is 5.01%.

Similarly, in Figure 5g, we display the approximation to the pattern obtained with 21

elements, overlayed with the exact pattern; the relative error of the obtained approxima-

tion is 0.443%; in Figure 5h, we display the the approximation obtained with 17 elements.

In the latter case, the relative error of the obtained approximation is 6.43%; Figure 5i

depicts the 17-node distribution producing the approximation illustrated in Figure 5h.

Finally, Figure 5j contains a graph of the values of the sources located at the 17 nodes

depicted in Figure 5i and generating the pattern shown in Figure 5h.

For comparison, the optimal approximation obtained with 19, 24, 29, 31, and 34

equispaced elements are displayed in Figures 5b, 5c, 5d, 5e, 5f, respectively; these are

also overlayed with the exact pattern.

Example 5.2 Our second example is identical to the first one, with the exception that 0

k = 31.416, so that the size of the array is 10 wavelengths.

In Figure 6, we display an approximation to the pattern obtained with 9 elements,

overlayed with the exact pattern; the locations of the elements are displayed in Figure 6a;

the relative error of the obtained approximation is 11.2%. -

14
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Similarly, in Figure 6f, we display the approximation to the pattern obtained with 11

elements, overlayed with the exact pattern; the relative error of the obtained approxima-

tion is 0.600%.

0 For comparison, the optimal approximation obtained with 9, 14, 16, and 18 equispaced

elements are displayed in Figures 6b, 6c, 6d, 5e, respectively; these are also overlayed

with the exact pattern.

Example 5.3 Our third example is identical to the preceding two, with the exception

that k = 102, so that the size of the array is about 32.45 wavelengths.

In Figure 7a, we display an approximation to the pattern obtained with 23 optimally

distributed elements, overlayed with the exact pattern and with the pattern obtained with

23 equispaced elements.

The relative error of the obtained approximation is 5.4%; needless to say, the error of

the approximation obtained with the equispaced nodes is more than 70%. As can be seen

from Figure 7c, the actual size of the obtained 23-element array is about 21 wavelengths;

in other words, in order to obtain this precision, the array needs to be about 2/3 of the

nominal (maximum permitted) length.

In Figure 7b, we display the approximation to the pattern obtained with 42 and 48

elements, overlayed with the exact pattern.

It is worth noting that with 33 optimally distributed elements, the pattern is approxi-

mated to the precision 0.12%; we do not display the obtained pattern since it is visually

indistinguishable from the pattern being approximated.

Example 5.4 Our final example is somewhat different from the preceding ones, in that

instead of approximating a sector pattern, we approximate a cosecant pattern (see (33), (34)

in Subsection 4.3 above).

In this example, we set

a = sin(15°), (38)
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b = sin(75°), (39)

and use the procedure of [18] to approximate Fa,b with a band-limited function. The band-

limit has been more or less arbitrarily set to 110, resulting in an antenna array about 35

wavelengths in size, and the supergain factor of the approximation was set to 1.1.

In Figure 8a, we display an approximation to the pattern obtained with 53 optimally

distributed elements, overlayed with the exact bandlimited pattern and with the pattern

obtained with 53 equispaced elements.

The relative error of the obtained approximation is 1.79%; the error of the approxi-

mation obtained with the equispaced nodes is about 42%.

In Figure 8b, we display the approximation to the pattern obtained with 47 optimally

distributed elements, overlayed with the exact pattern; the purpose of this final figure is

to demonstrate the behavior of the scheme when the number of elements is insufficient

(i.e. when the array is underresolved).

It is worth noting that it takes about 70 equispaced nodes to obtain the resolution

obtained with 47 optimally chosen ones.

The following observations can be made from Figures 5 - 8b, and from the more

detailed numerical experiments performed by the author.

1. In order to obtain reasonable precision, the scheme requires about 1 point per wave-

length in the antenna array; this is more or less independent from the structure of the

beam as long as the pattern is symmetric about the point x = 0. This fact is observed

numerically, even for modest numbers of nodes; for large-scale arrays, this statement

(interpreted asymptotically) can be proved rigorously. For certain beam structures, the

required number of nodes is even less (see Example 5.3). The reasons for these additional

savings are subtle, and have to do with the fact that the continuous source distribution

generating the pattern is relatively small on a large part of the antenna array; the al-

gorithm of [2] takes advantage of this fact to reduce the number of nodes. When the

beam is not symmetric about x = 0, the number of elements required does depend on

16
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the structure of the pattern, and the dependence is fairly complicated. Generally, the

improvement for non-symmetric beams is less than that for the symmetric ones.

2. The qualiative behavior of the scheme is similar to that of the Gaussian quadratures

in that it displays no convergence at all until a certain minimum number of nodes is

achieved; after that, the convergence is very fast. This behavior is not surprising, since

the scheme is based on a Generalized Gaussian quadrature.

3. For the sector pattern with the sector [-1/2, 1/2], the scheme reduces the required

number of nodes by- a factor of about 1.5 for small-scale problems, and roughly by a

factor of 2 for large-scale ones; again, for large-scale problems, an asymptotic version of

this statement can be proven rigorously.

4. For the cosecant pattern with the parameters specified by (38), (39), the number

of nodes required is reduced by approximately a factor of 1.4. As the sidelobe level is

ID reduced, the improvement obtained by going from the equispaced discretization to the

optimal one increases rapidly.

5. An examination of Figures 5a, 6a shows that while the optimal nodes are by no means

uniform, they display no clustering behavior.

6. An examination of Figure 5j shows that the intensities of individual elements do not

become large; this is confirmed by the more extensive numerical experiments performed

by the author.

7. The combination of the preceding two paragraphs (combined with additional numer-

ical experiments and analysis) provide evidence that configurations of this type should

pose no supergain problems.

6 Generalizations

The results described above admit radical generalizations in several directions; several

such directions are discussed below,

17



1. Conformal one-dimensional arrays. The extension of the techniques of this note

to one-dimensional arrays located on curves in R' is completely straightforward, involving

only a modest increase of the CPU time requirements of the procedure. Improvement in

the number of nodes required to produce a prescribed pattern is similar to that in the

case of a linear array.

2. Planar two-dimensional arrays. A straightforward generalization of the results of

Sections 4, 5, is to rectangular planar arrays. Here, a tensor product quadrature can be0

constructed from the quadratures of Sections 4, 5, possessing all of the desirable prop-

erties of the latter. Obviously, the advantage in the number of transducers is squared,

so that (for example) replacing 50 nodes in each of the two directions by 23 nodes (see

Example 5.3 above) will lead to a factor of (50/23)2 -4.7 savings in the number of

elements.

The theory of Section 4 has been extended for disk-shaped arrays, via (inter alia) the

techniques developed in [23]. The improvement in the number of nodes is comparable to

that obtained in the rectangular geometry, and the CPU time requirements do not differ

appreciably from those in the case of linear one-dimensional arrays.

The extension of the theory to more general geometries in the plane is in progress. At0

the present time, our only numerical experiments have been with arrays on triangles; the

results are encouraging, but the CPU time requirements of the algorithms are excessive

(we have only been able to design triangular arrays about 6 wavelengths in size). We
are now in the process of constructing a more efficient numerical procedure for such

computations.

3. Conformal two-dimensional arrays. The only environment in which we have

a satisfactory theory is when the array is located on a surface of revolution; even in

this environment, no experiments have been performed. We have not investigated more

general conformal two-dimensional arrays in sufficient detail.
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Figure 5: The pattern created by the 19 optimal elements, depicted in Figure

5a as described in Example 5.1
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Figure 5a: The distribution of elements creating the pattern depicted in

Figure 5, as described in Example 5.1
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Figure 5b: The optimal approximation to the sector pattern generated by 19

equispaced nodes, as described in Example 5.1
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Figure 5c: The optimal approximation to the sector pattern generated by 24
equispaced nodes, as described in Example 5.1
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Figure 5d: The optimal approximation to the sector pattern generated by 29
equispaced nodes, as described in Example 5.1
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Figure 5e: The optimal approximation to the sector pattern generated by 31

equispaced nodes, as described in Example 5.1

21



3 .5 1 1 1l i l aI

3

2.5

2

1.5

1

0.5
00

-0.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 5f: The optimal approximation to the sector pattern generated by 34

equispaced nodes, as described in Example 5.1
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Figure 5g: The optimal approximation to the sector pattern generated by 21
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Figure 5h: The optimal approximation to the sector pattern generated by 17
optimal nodes, as described in Example 5.1
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Figure 5i: The distribution of 17 elements creating the pattern depicted in

Figure 5h, as described in Example 5.1
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Figure 6b: The optimal approximation to the sector pattern generated by 9
equispaced nodes, as described in Example 5.2
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Figure 6c: The optimal approximation to the sector pattern generated by 14

equispaced nodes, as described in Example 5.2
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Figure 6d: The optimal approximation to the sector pattern generated by 16
equispaced nodes, as described in Example 5.2
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Figure 6e: The optimal approximation to the sector pattern generated by 18
equispaced nodes, as described in Example 5.2
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Figure 7a: The approximation to the sector pattern generated by 23 optimal

elements, vs. optimal approximation by 23 equispaced nodes, as described in

Example 5.3
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Polynomials are one of principal tools of classical numerical analysis. When a function
needs to be interpolated, integrated, differentiated, etc., it is assumed to be approximated
by a polynomial of a certain fixed order (though the polynomial is almost never constructed
explicitly), and a treatment appropriate to such a polynomial is applied. We introduce anal-
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Prolate Spheroidal Wave Functions, Quadrature, and
Interpolation

1 Introduction

Numerical quadrature and interpolation are a well-developed part of numerical analysis;
polynomials are the classical tool for the design of such schemes. Conceptually speaking,
one assumes that the function is well-approximated by expressions of the form

with reasonably small n, and designs algorithms that are effective for functions of the
form (1) (needless to say, one almost never actually computes the coefficients fail; one

* only uses the fact of their existence). Obviously, the polynomial approach is only effective
for functions that are well-approximated by polynomials.

When one has to handle functions that are well-behaved on the whole line (for ex-
ample, in signal processing), polynomials are not an appropriate tool. iIn such cases,
trigonometric polynomials are used; existing tools are very satisfactory for dealing with

0 functions defined and well-behaved on the whole of R'. Such tools, in effect, make the
assumption that the functions are band-limited or nearly so; a function f : R -4 JR is
said to be band-limited if there exist a positive real c and a function a E L 2 [-1, 1] such
that

* J eic t au(t) dt. (2)

However, in many cases, we are confronted with band-limited functions defined on inter-
vals (or, more generally, on compact regions in Rn). Wave phenomena are a rich source
of such functions, both in the engineering and computational contexts; they are also

* encountered in fluid dynamics, signal processing, and many other areas. Often, such
functions can be effectively approximated by polynomials via standard tools of classical
analysis. However, even when such approximations are feasible, they are usually not
optimal. Smooth periodic functions are a good illustration of this observation: while
they can be approximated by polynomials (for example, via Chebyshev or Legendre

9 expansions), they are more efficiently approximated by Fourier expansions, both for an-
alytical and numerical purposes. It would appear that an approach explicitly based on
trigonometric polynomials could be more efficient in dealing with band-limited functions.

In the engineering context, such an apparatus was constructed more than 30 years
ago (see [20]-[21], [7]-[9]). The natural tool for analyzing band-limited functions on JR' is

* the Fourier Transform, unless the functions are periodic, in which case the natural tool is

1



the Fourier Series. The authors of [20]-[21] observe that for the analysis of band-limited
functions on the interval, Prolate Spheroidal Wave Functions are likewise a natural ap-
proach. The authors also construct a multidimensional version of the theory, though
their apparatus is only complete for the case of spherical regions.

The present paper constructs tools for the use of the approach of [20]-[21] in the
modern computational environment. We construct a class of quadratures for band-
limited functions that closely parallel the Gaussian quadratures for polynomials. The
nodes are very close to being roots of appropriately chosen Prolate Spheroidal Wave
Functions, the resulting quadratures are stable, and all weights are positive. As in the
case of polynomials, there are interpolation, differentiation and indefinite integration
schemes associated with the obtained quadratures, exact on certain classes of band-
limited functions. These procedures are the main tools necessary for the numerical use
of spectral discretizations based on Prolate Spheroidal Wave Functions, instead of on
the usual polynomial bases. When dealing with band-limited functions, the number of
nodes required by these procedures to obtain a prescribed accuracy is much less than
that required by their polynomial-based counterparts. An additional bonus is the fact
that the condition number of differentiation of prolate spheroidal wave functions is less
than that of differentiation of the usual polynomial basis functions (see Section 8 below).

This paper is organized as follows. Section 2 summarizes various standard mathemat-
ical facts used in the remainder of the paper. Section 3 contains derivations of various
results used in the algorithms described in later sections. Section 4 describes algorithms
for evaluation of prolate spheroidal wave functions and associated eigenvalues. Section 5
describes a construction of quadratures for band-limited functions. Section 6 describes
an alternative approach to arriving at such quadratures; it shows that roots of appropri-
ately chosen prolate spheroidal wave functions can serve as quadrature nodes. Section 7
analyzes the use of prolate spheroidal wave functions for interpolation. Section 8 con-
tains results of our numerical experiments with quadratures and interpolation. Section 9
contains a number of miscellaneous properties of prolate spheroidal wave functions, and
Section 10 contains generalizations and conclusions.

2 Mathematical Preliminaries

As a matter of convention, in this paper the norm of a function is, unless stated otherwise,
its L2 norm:

,lfI = Jf f~X)12 dx. (3)
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2.1 Chebyshev systems

Definition 2.1 A sequence of functions 1,. .,n will be referred to as a Chebyshev
system on the interval [a, b] if each of them is continuous and the determinant

01 (xi) ... 01(x.)
(4)

On( XI) ... On( Xn)

is nonzero for any sequence of points xj,... xn, such that a < x1 < x 2 ... < x, :_ b.

An alternate definition of a Chebyshev system is that any linear combination of the
functions with nonzero coefficients must have fewer than n zeros.

Examples of Chebyshev and extended Chebyshev systems include the following (ad-
ditional examples can be found in [11]).

*Example 2.1 The powers 1, x, x 2, .... , xn form an extended Chebyshev system on the
interval (-co, co).

Example 2.2 The exponentials e-.lx, e-A2x,... , e-X form an extended Chebyshev sys-
tem for any A1,..., An > 0 on the interval [0, cc).

Example 2.3 The functions 1, cos x, sin x, cos 2x, sin 2x,. . . , cos nx, sin nx form a Cheby-
shev system on the interval [0, 27r].

2.2 Generalized Gaussian quadratures

A quadrature rule is an expression of the form
n

E w q(x3), (5)
j=1

where the points xj E R and coefficients wj E R are referred to as the nodes and weights
of the quadrature, respectively. They serve as approximations to integrals of the form

jb (x)w(x) dx, (6)

with w being an integrable non-negative function.
Quadratures are typically chosen so that the quadrature (5) is equal to the desired

integral (6) for some set of functions, commonly polynomials of some fixed order. Of
these, the classical Gaussian quadrature rules consist of n nodes and integrate polynomi-
als of order 2n - 1 exactly. In [13], the notion of a Gaussian quadrature was generalized
as follows:

3



0

Definition 2.2 A quadrature formula will be referred to as Gaussian with respect to a
set of 2n functions 1,... , 02n " [a, b] --+ R and a weight function w : [a, b] -- R+, if it

consists of n weights and-nodes, and integrates the functions gi exactly with the weight
function w for all i = 1,..., 2n. The weights and nodes of a Gaussian quadrature will be

referred to as Gaussian weights and nodes respectively.

The following theorem appears to be due to Markov [14, 15]; proofs of it can also be
found in [12] and [11] (in a somewhat different form).

Theorem 2.1 Suppose that the functions 1,... 02n " [a, b] -+ R form a Chebyshev
system on [a, b]. Suppose in addition that w : [a, b] -4 R is a non-negative integrable
function [a, b] -+ R. Then there exists a unique Gaussian quadrature for the functions

1,... , 02n on [a, b] with respect to the weight function w. The weights of this quadrature
are positive.

While the existence of Generalized Gaussian Quadratures was observed more than
100 years ago, the constructions found in [14, 15], [6, 12], [10, 11] do not easily yield
numerical algorithms for the design of such quadrature formulae; such algorithms have
been constructed recently (see [13, 25, 2]).

Remark 2.1 It might be worthwhile to observe here that when a Generalized Gaussian 0
quadrature is to be constructed, the determination of its nodes tends to be the critical
step (though the procedure of [13, 25, 2] determines the nodes and weights simultane-

ously). Indeed, once the nodes x1 , x 2, . .. , x,, have been found, the weights w1 , W2,... Wn

can be determined easily as the solution of the n x n system of linear equations

Zw, -O(xj) 0 dx, (7)

with i-= 1, 2,.. ., n.

2.3 Legendre Polynomials

In agreement with standard practice, we will be denoting by Pr, the classical Legendre
polynomials, defined by the three-term recursion

2n 1 n (8) 0
n+1 n±+

with the initial conditions

Po(x) = 1, (9)

P1 (x) = x; 0

4
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as is well-known,

Pk(l) = 1(10)

for all k = 0, 1, 2,..., and each of the polynomials Pk satisfies the differential equation
2 d2pk(X) dPk(x)

(1-x ) dx 2  x ±+k.(k+l)Pk(x)=O. (11)

The polynomials defined by the formulae (8),(9) are orthogonal on the interval [-1, 1];
however, they are not orthonormal, since for each n > 0,

0(x))2 dX = _/ (12)1 n + 1/2;7

the normalized version of the Legendre polynomials will be denoted by P7, so that

T.(x) = Pn(x)" -/n + 1/2. (13)

The following lemma follows immediately from the Cauchy-Schwartz inequality and from
the orthogonality of the Legendre polynomials on the interval [-1, 1]:

Lemma 2.2 For all integer k > n,

2 i42
Fnx Kn(x) dx < l(14)

For all integer 0 < k < n,

Xf xk-T(x) dx 0. (15)

2.4 Convolutional Volterra Equations

A convolutional Volterra equation of the second kind is an expression of the form

O(x) = f K(x - t) ýo(t) dt + a(x) (16)

where a, b are a pair of numbers such that a < b, the functions o, K : [a, b] -+ C are
square-integrable, and p : [a, b] -- C is the function to be determined. Proofs of the
following theorem can be found in [4], as well as in many other sources.

Theorem 2.3 The equation (16) always has a unique solution on the interval [a, b]. If
both functions K, a are k times continuously differentiable, the solution W is also k times
continuously differentiable.
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2.5 Prolate Spheroidal Wave Functions

In this subsection, we summarize certain facts about the Prolate Spheroidal Wave Func-
tions. Unless stated otherwise, all these facts can be found in [20, 17].

Given a real c > 0, we will denote by Fc the operator L 2[-1, 1] -+ L 2[-1, 1] defined
by the formula

F,(W)(x) " J eit W(t) dt. (17)

Obviously, F, is compact; we will denote by A0, A, ... , An,... the eigenvalues of Fc
ordered so that lAjI > IAjl for all natural j. For each non-negative integer j, we will
denote by 0j the eigenfunctions corresponding to Aj, so that

Ajoj (x) = J ei Oj(t) dt, (18)

for all x E [-1, 1]; we adopt the convention that the functions are normalized such that
I V..IL2[-1,1] = 1, for all j.1 The following theorem is a combination of several lemmas
from [20],[6],[11].

Theorem 2.4 For any positive real c, the eigenfunctions 00, V1,..., of the operator F,
are purely real, are orthonormal, and are complete in L 2 [-1, 1]. The even-numbered
eigenfunctions are even, and the odd-numbered ones are odd. All eigenvalues of Fc
are non-zero and simple; the even-numbered eigenvalues are purely real, and the odd-
numbered ones are purely imaginary; in particular, Aj = iiJAj1. The functions /i consti-
tute a Chebychev system on the interval [-1, 1]; in particular, the function Oi has exactly
i zeroes on that interval, for any i = 0, 1,... ,

We will define the self-adjoint operator Q,: L 2[-1, 1] -- L 2[-1, 1] by the formula
[1 sin(c.-(x - )

Qc(ýO) = 1 f--In c -(x- t) ýo(t) dt; (19)
7r 1- x _-t

a simple calculation shows that
c• (20)

that Q, has the same eigenfunctions as Fc, and that the j-th (in descending order)
eigenvalue lj of Q, is connected with Aj by the formula

c = _ . j 12. (21)

'This convention differs from that used in [20]; however, the present paper is concerned almost
exclusively with approximation of functions on [-1, 1], and in that context, the convention that the
functions {10} have unit norm on that interval is by far the most convenient. 0

6
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The operator Q, is obviously closely related to the operator P,: L 2 [-oo, oo] -- [-o, co]
defined by the formula

1 r sin(c.- (x - t))
1p= I; si*ct).o(t)dt, (22)
ir J- x-t

which, as is well known, is the orthogonal projection operator onto the space of functions
of band limit c on (-00, cc).

For large c, the spectrum of Q, consists of three parts: about 2c/7r eigenvalues that
are very close to 1, followed by order log(c) eigenvalues which decay exponentially from 1
to nearly 0; the remaining eigenvalues are all very close to zero. The following theorem,
proven (in a slightly different form) in [19], describes the spectrum of Q, more precisely.

Theorem 2.5 For any positive real c and 0 < a < 1 the number N of eigenvalues of
the operator Q, that are greater than a satisfies the inequality

- + log - log(c)- 10. log(c) < N < (23)
2c 1 1-

S+ (- log 1 log(c) + 10 -log(c).

By a remarkable coincidence, the eigenfunctions V50, b1, On, '4 of the operator Q, turn
out to be the Prolate Spheroidal Wave functions, well-known from classical Mathematical
Physics (see, for example, [16]). The following theorem formalizes this statement; it is
proven in a considerably more general form in [21].

Theorem 2.6 For any c > 0, there exists a strictly increasing sequence of positive real
numbers Xo, Xi,... such that for each j >_ 0, the differential equation

(1 - x 2) 0,"(x) - 2x 0'(x) + (xj - c2 x2 >) O(x) = 0 (24)

has a solution that is continuous on the interval [-1, 1]. For each j > 0, the function Oj
(defined in Theorem 2.4) is the solution of (24).

3 Analytical Apparatus

3.1 Prolate Series

Since the functions '0i,, ,.- - , n,.... are a complete orthonormal basis in L 2[-1, 1], any
formula for the inner product of prolate spheroidal wave functions with another function
f is also a formula for the coefficients of an expansion of f into prolate spheroidal func-
tions (which we will refer to as the prolate expansion of f). Thus the following theorem

7



provides the coefficients of the prolate expansion of the derivative of a prolate spheroidal
function, and also the coefficients of the prolate expansion of a prolate spheroidal wave
function multiplied by x. Those coefficients are also the entries of the matrix for differen-
tiation of a prolate expansion (producing another prolate expansion), and the entries of
the matrix for multiplication of a prolate expansion by x, respectively. (These formulae
are not, however, suitable for producing such matrices numerically, since in many cases
they exhibit catastrophic cancellation.)

Theorem 3.1 Suppose that c is real and positive, and that the integers m and n are
non-negative. If m = n (mod 2), then

O n; (x) 0.b (x) dx= Zfbn(x) On(Z) dx =0. (25)

If m : n (mod 2), then

0_ (x) 0.m (x) dx = A2 m A (1) •(1), (26)

-X-On(X)2b.(x)dx = 2 AmAnic •( + ¢A( ) & m(1) '¢b(1). (27)
ic A2m + A2

Proof. Since the functions Oj are alternately even and odd, (25) is obvious. In order to
prove (26), we start with the identity

f j eixt On(t) dt (28)

0
(see (18) in Subsection 2.5). Differentiating (28) with respect to x, we obtain

An 0' (x) = i c t 'x n(t) dr. (29)

Projecting both sides of (29) on Om and using the identity (28) (with n replaced with 0
m) again, we have

An f J n(x) 0.m(x) dx

= icc Om(x) t eit n (t) dt dx 0
1 1

= ic t On (t) eix te0,b,(x) dxdt
1

= ic A, t On(t)Om(t) dt. (30)
f-1

8
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Obviously, the above calculation can be repeated with m and n exchanged, yielding the
identity

Am 0' (x) On (x) dx = i c An
1 m t On (t) Om (t) dt (31)

combining (30) with (31), we have

A2n 1
Om' (X) On (-T) dx f Om (x) 0' (x) dx. (32)

m

On the other hand, integrating the left side of (32) by parts, we have

f O,',ý (X) On (x) dx

Om (1) On (1) - Om (- 1) 0. 1) 0' (x) 0. (x) dx. (33)

Since m n (mod 2), we rewrite (33) as

0' (x)On(x) dx

0. (1) On (1) 0' (x) 0. (x) dx. (34)

Now, combining (32) and (34) and rearranging terms, we get

2

On' W OM W dx 2 Am OM (1) On (1) - (35)
A2m + A2n

Substituting (30) into (35), we get

X On (X) Om (x) dx

1 An 1 On' (x) Om (x) dx
ic Am f-1

2I An 2 Am Om (1) On (1)
ic Am A2 + A2

M n
2 AmAn Om (1) On (1) (36)
ic A2 + A2M n

The following corollary, which is an immediate consequence of (32), finds use in the
numerical evaluation of the eigenvalues JAj}:

9



Corollary 3.2 Suppose that c is real and positive, and that the integers. m and n are

non-negative. If m : n (mod 2), then

A 2 ' (x) 0. (x) dx
,,n 'O n( 3 7 )

n k(x) 0, x) dx

3.2 Decay of Legendre Coefficients of Prolate Spheroidal Wave-
functions

Since each of the functions Oj is analytic on C, on the interval [-1, 1] it can be expanded
in a Legendre series of the form

00

Oj (x) = ) 3kk(x), (38)
k=O

with the coefficients #3 k decaying superalgebraically; the following two theorems establish
bounds for the decay rate.

Lemma 3.3 Let i-(x) be the n-th normalized Legendre polynomial (defined in (13)).
Then for any real a,

Seiax •• (x) dx

00 1 00 1

=- Xk]xP(x)dXi E 3k fx2k+1 -P'(X) dx. (39)

k=ko -+ k=ko 1

where

2k

ak = (-1)k (2k)!' (40)

/3k = (-1)k (2k+1)' (41)

ko = Ln/2J. (42)

Furthermore, for all integer m > [e. all + 1,

1m-1 1

eiax iP()d ni~ 2k Kw(x dx
1 ~k=ko 1

S-i 1 (k+1) (43)

k=ko1

10



In particular, if

n >.2 (Le aIlJ + 1), (44)

then

e J ax eFPi(x) dx (171(45)

Proof. The formula (39) follows immediately from Lemma 2.2 and Taylor's expansion
of eiax. In order to prove (43), we assume that m is an integer such that

m > Le -aIJ + 1. (46)

Introducing the notation

00 
00 10

RRm = ak X2k n(x) dx + i 1: pk1X2k+1T(x) dx, (47)
k=m k=m

we immediately observe that, due to Lemma 2.2 and the triangle inequality,

00 Ii,..ik k:1)

k= 2 m "

< j Ic1  (48)

Since (46) implies that

jal lal 1 1
2m <k <m<- < -' (49)

for all integer m, k > 0, we rewrite (48) as

a 12-. 1+ 1
ItR,-I < (2m)--- + 2 + "4 "

(<)a12m (50)

and obtain (43) immediately using Stirling's formula. Finally, we obtain (45) by choosing

m = Le -alj + 1. (51)

11



Theorem 3.4 Let ',k(x) be the m-th prolate spheroidal function with band limit c, let

Pkk(x) be the k-th normalized Legendre polynomial (defined in (13)), and let Am be the
eigenvalue which correspands to bm(x) (as in Theorem 2.4). Then for all integer m > 0
and all real positive c, if

k > 2 ([e. cJ+ 1) , (52) 0

then

0. (X) Pk)(X) dx < (1) (53)

Moreover, given any 6 > 0, if

then

Proof. Obviously

p1

]_2i(X)PTk(X) dx

I m "m (x) (Jf eicxt N(t) dt) dx
<1-A -~it(t) dtj dx. (56)

Introducing the notation

a = cx, (57)

and remembering that

jl m(x)l =dx , (58)

we observe that the combination of (56), (57), (58), and Lemma 3.3 implies that

f_ .m(x) Pk(x) dx

k-. - 1 f "P(x) Idx
SIAm 1 k21 1-)

IAmi, (2)k1

Substituting (54) into (53), we immediately see (55). 0
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4 Numerical Evaluation of Prolate Spheroidal Wave-
functions

Both the classical Bouwkamp algorithm (see, for example, [1]) for the evaluation of the
* functions Oj, and the algorithm presented in this paper for the same task, are based on

the expression of those functions as a Legendre series of the form

00

0i W)= E akPk (x); (60)
k=O

since the functions Oj are smooth, the coefficients ak decay superalgebraically (with
bounds for that decay being given in Theorem 3.4). Substituting (60) into (24), and
using (8) and (11), we obtain the well-known three-term recursion

(k+2)(k+1) 2

* (2k + 3)(2k + 5) C .kk+2+

(2k(k + 1)-1 2

(k(k + 1)+ (2k + 3)-(2k- 1) -Xi "k + (61)

k(k - 1) 2_ C2 . k-2 = 0.

* (2 k- 3 )(2 k- 1)

Combining (61) with (13), we obtain the three-term recursion

(k + 2)(k + 1) c2. +

(2k + 3) V(2k + 5)(2k + 1)

(k k )±2k(k+l)-i .c2 X). + (62)

k(k - 1) •c2 . '3 _2 = 0

(2k- 1) /(2k- 3)(2k + 1)

for the coefficients iQ, 01,... of the expansion

00

OI(x) = # PkQ(-); (63)
k=O

for each j = 0, 1, 2,..., we will denote by 3j the vector in 12 defined by the formula

flj (00j,/01,/0j,-..)- (64)

The following theorem restates the recursion (62) in a slightly different form.
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Theorem 4.1 The coefficients Xi are the eigenvalues and the vectors PI are the corre-
sponding eigenvectors of the operator l2 1 12 represented by the symmetric matrix A
given by the formulae

k~±1 ± 2k(k +1) -1 2Ak,k = k(k + ) + 2k (k )(65)
(k + 2)(k + 1) c2 (66)

Ak,k+2 =-.

(2k + 3) /(2k + 1)(2k + 5)

Ak+2,k = (k + 2)(k + 1) c 2, (67)(2k + 3)/( +)( +)

for all k = 0, 1, 2,..., with the remainder of the entries of the matrix being zero.

In other words, the recursion (62) can be rewritten in the form

(A- xj"-1) (,0') ='0, (68)

where A is separable into two symmetric "tridiagonal matrices A.,. and Aodd, the first
consisting of the elements of A with even-numbered rows and columns and the second
consisting of the elements of A with odd-numbered rows and columns. While these two
matrices are infinite, and their entries do not decay much with increasing row or column
number, the eigenvectors {fI} of interest (those corresponding to the first m prolate
spheroidal functions) lie almost entirely in the leading rows and columns of the matrices
(as shown by Theorem 3.4). Thus the evaluation of prolate spheroidal functions can be
performed by the following procedure:

* 1. Generate the leading k rows and columns of A, where k is given by (54).

* 2. Split the generated portion of A into Aeven and Aodd, and use a solver for the
symmetric tridiagonal eigenproblem (such as that in LAPACK) to compute their
eigenvectors {fol} and eigenvalues {Xj}.*

* 3. Use the obtained values of the coefficients Poi, Y•, 0i.., in the expansion (63) to
evaluate the function 0j at arbitrary points on the interval [-1, 1].

Obviously steps 1 and 2 can be performed as a precomputation, for any given value of
c. As a numerical diagonalization of a positive definite tridiagonal matrix with well-
separated eigenvalues, this precomputation stage is numerically robust and efficient,
requiring O(c m) operations to construct the Legendre expansions of the form (64) for the
first m prolate spheroidal functions; each subsequent evaluation of a prolate spheroidal
function takes 0(c) operations. _
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4.1 Numerical Evaluation of Eigenvalues

Although the above algorithm for the evaluation of prolate spheroidal wave functions also
produces the eigenvalues {Xj} of the differential operator (24), it does not produce the
eigenvalues {Aj} of the integral operator F, (defined in (17)). Some of those eigenvalues
can be computed using the formula

AjV~j(x) = eic t kj(t) dt, (69)

evaluating the integral on the right hand side numerically; however, that evaluation
obviously has a condition number of about 1/A•, and is thus inappropriate for computing
small Aj. A well-conditioned procedure is as follows:

* 1. Use (69) to calculate A0, evaluating the right hand side numerically, and with
x = 0 (so that ?po(x) is not small).

* 2. Use the calculated A0, together with Corollary 3.2, to compute the absolute val-
ues I Aj, for j = 1, 2, ..., m, computing each I AjI from I jAl1 (and again, evaluating
the required integrals numerically).

* 3. Use the fact that Ai = ij IAj (see Theorem 2.4) to finish the computation.

5 Quadratures for Band-Limited Functions

Since the prolate spheroidal wave functions ¢O, 1, ... , V ... constitute a complete or-
thonormal basis in L2[-1, 1] (see Theorem 2.4),

eicxt = E (Jf e icx Oj (') dT) o'j(t), (70)
j=O 1

for all x, t E [-1, 1]; substituting (18) into (70) yields

eiSWt =E AWklb (X ) Oj (t), (71)
0=0

Thus if a quadrature integrates exactly the first n eigenfunctions, that is, if

E WkOj (Xk) = ~ ¢(x) d,(72)
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for all j = 0, 1, ... ,n- 1, then the error of the quadrature when applied to a function
f(x) =e", with a E [-1, 1], is given by

E Wkeicaxk eirax dx
k=1

=5'Wk (Ai ýki(a) Pi(Xk)) -11(Aii~(a>,Oi(x)) dx. (3
k=1 =

Due to the orthonormality of the functions {Oj},

00 0

E ZIAj ()IO (x (74)
j=n n

From (74), it is obvious that the error of integration (73) is of roughly the same mag-
nitude as A, provided that n is in the range where the eigenvalues {Aj} are decreasing
exponentially (as is the case for quadratures of any useful accuracy; see Theorem 2.5)
and provided in addition that the weights {Wk} are not'large.

Now, the existence of an n/2-point quadrature that is exact for the first n Prolate
Spheriodal Wave functions follows from the combination of Theorems 2.1, 2.4; an al- 0
gorithm for the numerical evaluation of nodes and weights of such quadratures can be
found in [2]. An alternative procedure for the construction of quadrature formulae for
band-limited functions (leading to slightly different nodes and weights) is described in
the following section; a numerical comparison of the two can be found in Section 8 below.

Remark 5.1 The above text considers only the error of integration of a single exponen-

tial. For a band-limited function g: [-1, 1] --+ C given by the formula

g(X) =J G(t) ei-t dt, (75)

for some function G : [-1, 1] -+ C, the error is obviously bounded by the formula
m r

EWkg(Xk) - f (x)dx - IGII, (76)
k=1 _

where 6 is the maximum error of integration (73) of a single exponential, for any t E
[-1, 1]. While uIGII might be much larger than IhghI[-l,i] (as it is if, for instance, g = 0 30 .- ),
if the same equation (75) is used to extend g to the rest of the real line, then by Parseval's
formula IhGII = hlglh-00,00); that is to say, although the error of such a quadrature when
applied to a band-limited function is not bounded proportional to the norm of that
function on the interval of integration, it is bounded proportional to the norm of that
function on the entire real line.
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6 Quadrature Nodes from Roots of Prolate Func-
tions

An alternative to the approach of the previous section is to use roots of appropriate
prolate spheroidal wave functions as quadrature nodes, with the weights determined via
the procedure described in Remark 2.1. The following theorems provide a basis for this;
numerically (see Section 8) the resulting quadrature nodes tend to be inferior to those
produced by the optimization scheme of [13, 25, 2]; however, they are useful as starting
points for that scheme, or as somewhat less efficient nodes which can be computed much
more quickly.

6.1 Euclid Division Algorithm for Band-Limited Functions

The following two theorems constitute a straightforward extension to band-limited func-
* tions of Euclid's division algorithm for polynomials'. Their proofs are quite simple, and

are provided here for completeness, since the author failed to find them in the literature.

Theorem 6.1 Suppose that a, p : [0, 1] -ý C are a pair of c2-functions such that

0 0(1)-O, (77)

c is a positive real number, and the functions f, p are defined by the formulae

f(x) = j U(t) e2ixt dt, (78)

p(X) = fj (t) e'it dt. (79)

Then there exist two cl -functions 7, • [0, 1] -+ C such that

f(x) = p(x) q(x) + r(x) (80)

for all x E R, with the functions q, r : [0, 1] -+ R defined by the formulae

q(x) = 7(t) et=t dt, (81)

r(x) = j (t) ei't dt. (82)

17
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Figure 1: The split of integration range that yields (85)

Proof.
Obviously, for any functions p, q given by (79), (81),

p(x) q(x) = j P(t) eic3t dt 10 77(i-) ezc7 di-10 dr

= j jo (t) 77(T) eiCX(t+T) dr dt. (83)

Defining the new independent variable u by the formula

U = t + T, (84)

we rewrite (83) as

p (x) q(x) = jo ecux jo ýp(u - ) '77(7-) di- du

+ 2 e iuz (•,(-r) 7(r) dr du (85)

(see Figure 1). Substituting (78), (82), and (85) into (80), we get
fooI eiu foj 77 (- ) dr du

+ j eix 1o(u-r) 7](r) dir du + 1(t) eict dt

flJ2 o(t) e2icxt dt + 11 U(t) e2icxt dt. (86)

Due to the well known uniqueness of the Fourier Transform, (86) is equivalent to two
independent equations:

eicux jo o(u-r) 77(7) d- du + j •(t) eicxt dt

= j1/2 U(t) e2ixt dt, (87)

18
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2 eicux W o(u-r) r7(r) dr du j (t) e2 ixt dt. (88)1 f- 1 1/2 at ~~

Now, we observe ihat (88) does not contain 6, and use it to obtain an expression for 77
as a function of ýp, a. After that, we will view (87) as an expression for ý via Wp, a, rq.

From (88) and the uniqueness of the Fourier Transform, we obtain

J (U-T) 77(T) dr = 01( 2 (89)

for all u E [1, 2]. Introducing the new variable v via the formula

v = u -, (90)

we convert (89) into

,v+

which is a Volterra equation of the first kind with respect to 77; differentiating (91) with
respect to v, we get

-_W(1) 77(V) + V'(v+l-r) l(,r) dT = `v +• 1--) (92)
* yJ1)JUJr]j~U±-)1y 2 2

which is a Volterra equation of the second kind. Now, the existence and uniqueness
of the solution of (92) (and, therefore, of (89) and (88)) follows from Theorem 2.3 of
Section 2.

With 77 defined as the solution of (89), we use (87) together with the uniqueness of
the Fourier Transform, to finally obtain

ý(U) = a(u) -/o W(u-T) 77(T) dT, (93)

for all u E [0, 1].

The following theorem is a consequence of the preceding one.

Theorem 6.2 Suppose that a, ýp : [-1, 1] -+ C are a pair of c2-functions such that
w(-1) 5 0, ýp(1) 54 0, c is a positive real number, and the functions f,p are defined by
the formulae

f M = J o(t) e2 ict dt, (94)

p(X) = f w(t) ei t dt. (95)
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Then there exist two cl-functions 7,•" [-1,1] -C C such that

f(x) = p(x),q(x) + r(x) (96)

for all x E R, with the functions q, r: [-1, 1] -+ R defined by the formulae

q(x) = f 7(t) e'-t dt, (97)

r(x) = J ý(t) ei-t dt. (98)

Proof.
Defining the functions f+, f-,p+, p-, by the formulae

j1

f+(W) = 1o U(t) e2 ict dt, (99) 0

f(x) =1 0(t) e2icxt dt, (100)

t(x) = dt,01)P+( ) = f ()e•td,(ll

,0

p_(x) = 1 I(t) e-i' dt, (102)

we observe that for all x E R1,

f(x) = f+(x) + f_(x), (103)

p,(-) = p+(x) + p_(x). (104)

Due to Theorem 6.1, there exist such 77-, _ •+, _, that

f+(x) = p.(x) q+(x) + r-÷(x), (105)

f-(x) = p_(x) q_(x) + r_(x), (106)

with the functions q+, q-, r+, r- defined by the formulae S
ro1

q+(x) = 10 R+ (t) ePýt dt, (107)
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0
r+(x) = f +(t) ejc' dt, (109)

r_(x) = f (t) e'c t dt. (110)

Now, defining q, by the formula

q(x) = q_(x) + q+ (x) (111)

for all x E [-1, 1], we have

p(x)q(x) = (p_(x)+p+(x)) (q_(x) +q+(x))

= p+(x)q+(x)+p_(x)q_(x)+p.(x)q+(x)+p+(x)q_(x), (112)

and we define r(x) by the obvious formula

r(x) = r_(x) + r+(x) - (p- (x) q+ (x) + p+(x) q_(x)). (113)

El

S0

6.2 Quadrature nodes from the division theorem

In much the same way that the division theorem for polynomials can be used to provide
a constructive proof of Gaussian quadratures, Theorem 6.2 provides a method of con-
structing generalized Gaussian quadratures for band-limited functions. The method is
as follows.

To construct a quadrature for functions of a bandwidth 2c, prolate spheroidal wave
functions corresponding to bandwidth c are used. (Thus the eigenvalues {Aj} and eigen-
functions {fbj} are in this section, as elsewhere in the paper, those corresponding to
bandwidth c). The following theorem provides a bound of the error of a quadrature
whose nodes are the roots of the n'th prolate function 0., when applied to a function
f which satisfies the conditions of the division theorem, in terms of the norms of the
quotient and remainder of f divided by Vb,:

Theorem 6.3 Suppose that x1 ,x 2,. .. ,xn E R are the roots of 0,". Let the numbers
1w,,w2 ,. .. ,w, E R be such that

SF 1

E Wkbj(Xk) = / j(x) dx, (114)
k=12
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for all j = 0,1,..., n - 1. Then for any function f [-1, 1] -+ C which satisfies the
conditions of Theorem 6.2,

n 1

ElWkf(Xk) -- fif(x) dx
k=1 _-1

< j j 1"1711 + zI•1" J~j' 2+•IVwkII) , (115)
j=n k=1

where the functions 7, : [-1, 1] -+ C are as defined in Theorem 6.2.

Proof. Since f satisfies the conditions of Theorem 6.2, there exist functions q, r
[-1,1 -+ R defined by (97),(98) such that

f(x) = On (x) q(x) + r(x). (116)

Then, defining the error of integration Ef for the function f by

Ef = s f (x) dx (117)

k=1 -

we have

Sf EWk (0. (Xk) q (Xk) + r (xk)) - fJ(on (x) q (x) + r (x)) dx
k=1 -

nn

1: Wk On22(Xk) q (Xk) On 4'(x) q (x) dx
k=1 -

+( Lwkr(xk) f 0. r(x) dx (118)
k=1

Since the nodes {xk} are the roots of On,L,

E Wk OP2 (Xk) q(Xk) =0. 19
k= 1

Thus

Ef On ]_?(x) q (x) dx + r wrx)- r(x) dx .(120)
k=1 -

Now

JOn(x)q(x)dx = ', ((x) f?(t)e"t' dtdx

f n (x(t)J eixt dxdt

f •(t) An 0.,(t) dt. (121)
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Using the Cauchy-Schwartz inequality and the fact that the function On has unit norm,
we get from (121) that

f21bn(x)q(x) dx A1 117711. (122)

Also,
n f
Zwkr(xk) - r(x) dx
k=1 -

n1

* - ZWk (Jf 1 (t) etC~kt dt) - 1f1 (16(t) e'-t dt) dx

f J (t) Wke iCkt -Jeicx dx) dt. (123)
\k=1lJ-

Substituting (73) into (123), and using the Cauchy-Schwartz inequality, we get

E wkr(Xk) r r(x) dx

1 6 (t) (-Wk (1:Ai Oj(t)zOi(Xk)
k= (: n

1 0

-I (f ' :Ai V~(t) OPi(x)) dx)d

*1 < 1 H Zi 1A. II"1 (l-2+ 5 IlwkllI) (124)j~n k~l

Combining (120), (122), and (124), we get

Ef < IAnI.7 + 1 S IAI- IIMII. 22 +t Ilwk, •) (125)
j=n k=1

Remark 6.1 The use of Theorem 6.3 for the construction of quadrature rules for band-
limited functions depends on the fact that the norms of the band-limited functions q
and r in (116) are not large, compared to the norm of f (both sets of norms being on
[-oc, oo]). Such estimates have been obtained for all n > 2c/ir + 10 log(c). The proofs
are quite involved, and will be reported at a later date. In this paper, we demonstrate
the performance of the obtained quadrature formulae numerically (see Section 8 below).
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Remark 6.2 It is natural to view (116) as an analogue for band-limited functions of
the Euclid division theorem for polynomials. However, there are certain differences. In
particular, Theorem 6.1 admits extensions to band-limited functions of several variables,
while the classical Euclid algorithm does not. Such extensions (together with several
applications) will be reported at a later date.

7 Interpolation via Prolate Spheroidal Wavefunctions

Interpolation is usually performed by the following general procedure: assuming that the
function f : [a, b] -+ C to be interpolated is given by the formula

f(x) = C1 1 (X) + C2 q22(X) +" • • + C.O. (X), (126)

where € 1, € 2, ... , O : [a, b] -+ C are a fixed sequence of functions (often polynomials),
solve an n x n linear system to determine the coefficients c1 , c2 , ... , c. from the values of
f at the n interpolation nodes, then use (126) to evaluate f wherever needed. As is well
known, if f is well-approximated by a linear combination of the interpolation functions,
and if the linear system to be solved is well-conditioned, then this procedure is accurate.

As shown in Section 5 in the context of quadratures, a linear combination of the first
h prolate spheroidal functions V'0, b1,. , in- for a band limit c can provide a good
approximation to functions of the form eixt, with t E [-1, 1] (see (71,74)); in the regime
where the accuracy is numerically useful, the error is of the same order of magnitude as
[Anj. This, in turn, shows that they provide a good approximation (in the same sense as
in Remark 5.1) to any band-limited function of band limit c. Thus, if Vb0, b1,. . . , n- 1 are
used as the interpolation functions in this procedure, they can be expected to yield an
accurate interpolation scheme for band-limited functions, provided that the matrix to be
inverted is well-conditioned. The following theorem shows that if the interpolation nodes
are chosen to be quadrature nodes accurate up to twice the bandwidth of interpolation,
with the quadrature formula being accurate to more than twice as many digits as the
interpolation formula is to be accurate to, then the matrix inverted in the procedure is
close to being a scaled version of an orthogonal matrix.

Theorem 7.1 Suppose the numbers w 1, w2,... ,wn E R and X1, X2 ,... ,xn E R are such
that

1. n

e2icax dx - E wje 2icaxj < S, (127)
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for all a E [-1, 1], and for some c > 0. Let the matrix A be given by the formula
V)0(xI) Vel(xl) ... Oni(Xi))

A= 0(X2) 01(X2) ... ¢ýb- 1 (x 2 ) (128)

00( X.) 01( X) ... ¢ , )(x,0
let the matrix W be the diagonal matrix whose diagonal entries are w1 , w2 , ... , w?, and
let the matrix E = [ejk] be given by the formula

E =I- A*WA. (129)

Then

lejkl < 2- (130)

Proof. Clearly

ejk = Jjk - S w, j_.(x,) Z-/'1(XI), (131)
1=1

where Jjj is the Kronecker delta function. Using (18), this becomes

ejk = 3jk- •w e 1-t (t) dt

e%-'Ok-k1(T) dr

S- -A-J-Ak-1J-J-1 -(t)¢k-1(T) 5wie-'i1teicxl=r dtdT. (132)

Using (127), this becomes

ejk= 6jjk - i 1- j-1(t)1k-1(7) (133)
()e icsteicsr ds- fE(t+-T))did-,

where f, : [-2, 2] C- C is a function which satisfies the relation

IfL(x)I < 6, (134)

for all x E [-2, 2]. Thus

ejk = Jik -AOf j_ l ',_l(t) Ok_1 (r) J e-icst eics ds dt dT

+ 1 J f ij-i 1 (t) k-1()f(t + r) dtdr (135)
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Using (18), this becomes

eik = 6Jk- j '4b1i(S) 'iOk.1 (s) ds1 S_
--AJAk_ J-1 [ k-(T) _ O- 1_(t) f,(t + -) dt d. (136)

Due to the orthonormality of the functions {Oj}, this becomes

ek= - ( - (t) +(t+r) dtdr. (137)Aj j-,Ak-1 1 1)k

Using the Cauchy-Schwartz inequality, this becomes

IeJk < 11'4k-111 f/l J - 1(t)f(t+±) dt 2 dTlejk] <Aj-,Ak-1

< Aj_ _ J j112 I f(t + )12 dt d-r

1 l-f1 (t + )12 dt dr

< (138)
,Aj-l,All

From inspection of Theorem 2.5, it can easily be seen that the number N of eigenval-
ues needed for a bandwidth of 2c and an accuracy of 6 2 is roughly twice the number of
eigenvalues needed for a bandwidth of c and an accuracy of e. Thus a generalized Gaus-
sian quadrature for a bandwidth 2c and an accuracy E2 has roughly the same number
of nodes as are needed for interpolation of accuracy -. In our numerical experiments,
this correspondence was found to be much closer than the rough bounds in Theorem 2.5
indicate; in the results tabulated in Section 8, the number of nodes for an interpolation
formula of a desired accuracy e was always chosen to be the number of quadrature nodes
for a desired accuracy e2 for twice the band limit (that number, in turn, being chosen
as indicated in Section 5); the correspondence between the desired accuracy and the
experimentally measured maximum error can be seen in Tables 3 and 4.

The coefficients cl, c2 ,... , cn produced by this interpolation procedure (see (126))
can, of course, just as easily be used for evaluating derivatives or indefinite integrals of
the interpolated function, as they can for computing the function itself.
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8 Numerical Results

The algorithms of Sections 5-7 have been implemented in double precision (64-bit floating
point) arithmetic, with results shown in Tables 1-4. Tables 1 and 2 show the perfor-
mance of quadrature nodes produced by the schemes of Sections 5 and 6, when used as
quadrature nodes; Tables 3 and 4 show their performance when used as interpolation
nodes. These are not actually the same sets of nodes; even with the bandwidth c for in-
terpolation being half of the bandwidth for quadrature (as it is in the tables), more nodes
are needed to achieve a given accuracy of interpolation than are needed to achieve a given
accuracy of quadrature, as can be seen by comparing the number of nodes (printed in
the column labeled n in each table). The error figures in the tables are approximations
of the maximum error of interpolation or of the quadrature, when applied to functions
of the form cos(ax) and sin(ax), with 0 < a < c; they were computed by measuring the
error at a large number of points in a (for interpolation, in both a and x), including the
extremes. The column labeled "Roots" contains the errors for the nodes produced by
the scheme of Section 6; the column labeled "Refined" contains the errors after those
nodes, used as a starting point, have been run through the scheme of Section 5. The
variable 6 which appears in the tables is the requested accuracy, used to determine the
number of nodes in the ways described in Sections 5 and 7.

Also tabulated are the numbers of Legendre nodes required to achieve the same
accuracy E using polynomial interpolation or quadrature schemes. Since Chebyshev
nodes are generally known to be superior for interpolation, for that case the numbers of
Chebyshev nodes required to achieve the same accuracy are also tabulated.

Figure 2 contains the maximum norm of the derivative of each prolate function Oj (x),
for c = 200 and x E [-1, 1], as a function of j; also graphed, for comparison, is the
maximum norm of the derivative of each normalized Legendre polynomial Pj(x) over
the same range; and graphed below, on the same horizontal scale, are the norms of the
eigenvalues Aj. The graph shows that, for this value of c, computing the derivatives of
a function given by a prolate series is a better-conditioned operation than computing
the derivatives of a function given by a Legendre series of the same number of terms.
(Obviously, if the number of terms can also be reduced, as in the situations of Tables 1-
4, there is a further improvement in the condition number.) The same general pattern
of behavior is exhibited for other values of c; as c approaches zero (and the prolate
functions approach the Legendre polynomials), the value of j at which the maximum
norm of the derivative rises sharply also approaches zero (as is to be expected, since for
c = 0 the prolate functions reduce to Legendre polynomials). Finally, Tables 5 and 6
contain samples of quadrature weights and nodes.

Remark 8.1 In this paper, detailed discussion of issues encountered in the implemen-
tation of numerical algorithms has been deliberately avoided, as well as any discussion of
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CPU time requirements, memory requirements, etc. Thus, we limit ourselves to observ-
ing that all algorithms have been implemented in FORTRAN, that with the exception of
the procedure for the evaluation of Prolate Spheroidal Wave functions described in Sec-
tion 4, we have not designed or implemented any new or original numerical algorithms,
and that the procedure of Section 4 consists of applying standard tools of numerical
analysis (diagonalization of a tridiagonal matrix) to the well-known recursion (61). The
resulting algorithm for the evaluation of prolate spheroidal wave functions has the CPU
time requirements proportional to c2 , with a fairly large proportionality constant. The
procedure of [2], when applied to the system of functions ¢00V, -,...-, 02,+ 1 requires order
n3 operations, also with a fairly large proportionality constant. On the other hand, the
cost of finding all roots n of the function on lying on the interval [-1, 1] is proportional
to n, and the proportionality constant is not large. The largest c we have dealt with in
our experiments was about 6000, with resulting quadratures having about 1900 nodes.
In this regime, the construction of the quadrature (both nodes and weights) took several

)/ minutes on the 300-mp4op SUN workstation; while there are fairly obvious ways to
reduce the cost of the calculation (both in terms of asymptotic CPU time requirements
and in terms of associated proportionality constants) we have made no effort to do so.

The following observations can be made from the examples presented in this section,
and from the more extensive tests performed by the authors.

1. When the nodes obtained via the algorithm of [2] are used for the integration of band-
limited functions, the resulting quadrature rules are significantly more accurate than the
quadratures obtained from the nodes of appropriately chosen prolate functions; however,
the difference between the numbers of nodes required by the two approaches to obtain
a prescribed precision is not large. When the nodes obtained via the two approaches are
used for the interpolation (as opposed to the integration) of band-limited functions, the
performances of the two are virtually identical.

2. For large c, the number of nodes required by a quadrature rule for the integration
of band-limited functions with the band-limit c is close to -.; the dependence on the
required precision of integration is weak (as one would expect from Theorem 2.5 and
subsequent developments).

3. The numbers of nodes required by our quadratures rules to integrate band-limited
functions is roughly 7r/2 times less than the numbers of Gaussian nodes; the numbers
of nodes required by our interpolation formulae in order to interpolate band-limited
functions is roughly ?r/2 times less than the number of Chebychev (or Gaussian) nodes.
Again, the dependence of the required number of nodes on the accuracy requirements is
weak.

4. The norm of the differentiation operator based on our nodes is of the order c3/2 , as
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compared to the norm of the spectral differentiation operators obtained from classical
polynomial expansions; this might be useful in the design of spectral (or pseudospectral)
techniques.

9 Miscellaneous Properties

Prolate spheroidal wave functions possess a rich set of properties, vaguely resembling the
properties of Bessel functions. This section establishes some of those properties. Some
of the identities below can be found in [20],[17],[5]; others are easily derivable from the
former.

The identity

eicx'= A VE WJ Oj W) 1t (139)
J=0

(see Section 5) has a number of consequences which, while fairly obvious, seem worth
recording, since similar properties of other special functions have often been found useful.
Differentiating (139) m times with respect to x and n times with respect to t yields the
formula

xmtne•t (1(m+n) oo
= >c •_, Aj3  m) (x) • (t), (140)

%c j=O

for all x,t E [-1, 1]. Multiplying (139) by e-"t, and integrating with respect to t,
converts it into

sin(c. (x - u)) c ( (141)
X-u 2 j=o

Taking the squared norm of (139), and integrating with respect to x and t, yields the
formula

E-- I~j]2 = 4; (142)
j=O

combining this with (21) yields

0 = 2c (143)

j=0 7"
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Setting x = t = 1 converts (139) into
0o

ei= =EAj OJ(1). (144)
j=O

The identity

Aji(x) j eicxt j(t) dt (145)

(see Section 2.5) also has a number of simple but potentially useful consequences. Dif-
ferentiating it k times with respect to x, we get

Ajo~k)(X) = (ic)k J eict tk 'Ob (t) dt. (146)

We next consider the integral

e1icxt

f(x) = f(a,x) = - (t) dt. (147)

Differentiating (147) with respect to x, we have

d 1 rl x
f(a,x) = ic -- ¢ j (t) dt. (148)

dx"--

Multiplying (147) by ica, and subtracting it from (148), we obtain

-f(a,x) - icaf(a,x) = ic ei=t Oj(t) dt (149)

= ic~joj(x).

In other words, f satisfies the differential equation

f'(x) - icaf(x) = icAjoj(x). (150)

The standard "variation of parameter" calculation provides the solution to (150):

f(x) = icAj fe-ica(x-t)Oj(t) dt + f(O) e'-x. (151)

Introducing the notation

1 d
D = o -- d(152)

ic dx
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(i.e. D is the product of multiplication by 1/ic and differentiation), we rewrite (146) as

1 )(W = Tf tk ei'-t Oj(t)dt; (153)

for an arbitrary polynomial P (with real or complex coefficients),

P(D) (ý/j) (x) = 1f1  P(t) ei-t Oj (t)dt. (154)
3-

By the same token, the function 0 defined by the formula
1 iC~Xt

O()(e) = (t)dt (155)

satisfies the differential equation

P(D)(¢)(x) = Am2,,m(X). (156)

The following lemma provides a recursion connecting the values of the k-th derivative
of the function 0,m with its derivatives of orders k - 1, k - 2, k - 3, k - 4.

0 Lemma 9.1 For any positive real c, integer m > 0, and x E (-oo, +oo),
(1 - k) 4 k+2)(x) 2 (k + 1) Xx

+ (Xm-k(k + 1) -Mc• ) k$)(x)
- 2c2 k x Qk-l)(X) _C 2 k(k- 1)¢-2)(x) =0 (157)

for all k > 2. Furthermore,

(1 - x2) Om4(x) - 4 x (x) + (Xm - 2 - c2x2) ,'(x)

- 2c 2 x ¢n(x) = 0. (158)

In particular,

-2(k + 1) 0 (rk+1) (1) + (Xmn - k (k + 1) - c2) V)(m1)(1)

- 2 C2 k O/4-1)(1) - c2 k (k - 1) (k-2)( 1 ) = 0 (159)

for all k > 2, and

- 20'4n(1) + (Xm - c2) 0.'(1) = 0, (160)

40"(1) + (Xm - 2 - c2) V)(1)-2C 2  (1) ---- 0. (161)
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Furthermore, for all integer m > 0 and k > 2,

0(k+2)(Q) + (xm - k (k + 1)) (k)(O)

-c2k(k - 1) -2) (0) = 0. (162)

For all odd m,

0. (0) + (X. - 2) Om' (0) = O (163)

and for all even m,

01.1 (0) + Xb0n (0) 0. (164) 0

Finally, for all integer m > 0, k > 0,

Om(1) 54 0, (165)
(2k) n

2 =0, (166) 0

=2M+1)(0) 0. (167)

Proof. All of the identities (157) - (164), (166), (167), are immediately obtained by
repeated differentiation of (24). 0
In order to prove (165), we assume that

0", (l) = 0 (168)

for some integer m > 0, and observe that the combination of (168) with (159), (160), (161)
implies that

( 0k)(1) (169)

for all k = 0, 1, 2,.... Due to the analyticity of 0m(x) in the complex plane, this would
imply that

0"m(X)-=0 (170)

for all x E R1.
0

The following is an immediate consequence of the identity (160) of Lemma 9.1. 0

Corollary 9.2 For all integer m, n > 0;

?PM'(1) - V). (1) - On' (1). - 0-(1) = (Xn - X,.)" '(1)" m(1), (171)

where Xm, Xn E R are as defined in Theorem 2.6.
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Theorem 3.1, in Section 3.1, gives formulae for the entries of matrices for differen-
tiation of prolate series and for multiplication of prolate series by x. Matrices for any
combination of differentiation and of multiplication by a polynomial can obviously be
constructed from these two matrices; for instance, calling the differentiation matrix D,
and the multiplication-by-x matrix X, the matrix for taking the second derivative of a
prolate series, then multiplying it by 5 - x2, is equal to (5I - X 2 )D 2 .

In many cases, however, there are simpler formulae for the entries of such matrices,
that is, for inner products of Oj (x) with its derivatives and with polynomials. The follow-
ing theorems establish several such formulae, as well as a few formulae for inner products
which do not involve Oj(x) itself but only its derivatives. We start with Theorem 3.1,
restated here for consistency.

Theorem 9.3 Suppose that c is real and positive, and that the integers m and n are
non-negative. If m = n (mod 2), then

O/(X) Om (X) dx- XOn(X)On(x) dx =0. (172)

If m : n (mod 2), then

I ' (x) .(x) dl - 2 A(
n X=(2 d 2 Oam(l) n(1), (173)

- dx 2 AmAn
,(x) Om(x) dx + ,A2 +A (1)2 )(1). (174)

Theorem 9.4 Suppose that c is real and positive, and that the integers m and n are
non-negative. If m i n (mod 2), then

f n x (x) Om (x) dx = 0. (175)

If m = n (mod 2), then
[1,-_ Am+A

x0' (-) .(x) dx- Am (2 Om (1) On (1) - Smn) • (176)

Proof. Identity (175) is obvious since the functions Oj are alternately even and odd (see
Theorem 2.4). In order to prove (176), we consider the integral

Jn0x' (x) Om(x) dx

1 Jx (f ec t On(t) dt Oma(x) dx-An f-- ' 1 x
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ic 1Jx 0'(X) (jt pn (t) eicxt dt dxic 1 1

= j-- t(J O x W(x)ei-t dx) On(t) t

In other words,

On the other hand, integrating the left side of (177) by parts, we obtainn0l Am) OmP(>,x dx) (177

= 2Om(1) On,(1)- f (On(X) Om' (X)X+' On(X) Om(X)) dX

= 2Om(1)On,(1)f- xOn(X) 'Om(x) dx-,,mn.

Combining (177) and (178), we have

Am f X Om (x) dx

= 20,m(1)' On(1)f (X) On (x) - d mn,

from which (176) follows directly. C

Theorem 9.5 Suppose that c is real and positive, and that the integers m and n are
non-negative. If m : n (mod 2), then

2 x2 ,(x) Orm(x) dx = O. (178)
d-1

If m n (mod 2) and mA n, then

' x 2 0 (x) O(x) dx -
1--1

2An

Am - An (on'(1) Om (1) - (17(1) (1)))
4A, +A

A, + Am ¢(1) e(l)1793
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An

Am - An (xn- xm) ¢•(1) ¢m(1)
4A(

wn Xn Am¢(1) 0.a(1), (180)

where Xm, Xn E R are as defined in Theorem 2.6.

Proof. Clearly (178) is true, since the functions Oj are alternately even and odd. In
order to prove (179) and (180), supposing that m = n (mod 2) and m 5 n, we consider
the integral

x 20x n 'k(x) O•m(X) dx
1 21

- I x~ J et cx' On (t) dt )m'kn(x) dx

* - -? Jf ?V)'m(X) x2 t k() elt dt) dx

C2 x f (j1  
itdx) On (t) t 2 dt

Am 1/ 2 I
_ J t2  O n(t) e4 .(t) dt,

An 1

which is summarized as

-- A( n (x) Om(x) dx + x (181)

On the other hand, integrating the left side of (181) by parts, we have
* l1 x2 'ipn(x) Om(x) dx

On2'(1) 0m(1)J- I-(x) (¢;(x)X2 +2xopm (x)) dx

0= 2'(1) Omr() - 2 0' (x)¢On(x)x dx

f J .b(X) O,(X) x 2 dx. (182)

Due to Theorem 9.4 and the fact that m :A n, we immediately rewrite (182) as
Sf_ 2x2 u(X)Om(x) dx

2Am=2¢' (1) Om (1) - n2 0
-( Am + An 2?n(1) 0. m (1)

- ' j ' (x) 0' (x) dx , (183)
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which we rewrite as

x11 . (x>) Om'(x) dx

0 4Am2¢:(1¢m(1)Am + An ,() (1

n1 1 , x 2 'P(X) m(x)dx (184)

Swapping m with n, we convert (184) into

x2 0.(x) 4.(x) dx

_4 An
S2 O' (1) 0, (1) Am + A, •n (1) 0.m (1)

f X2 O4/' (x) 0. (x) dx. (185)0

Combining (184) and (185), we obtain
1_ "X x x-2O'()O 1 4 An

A x2 01.b(X) Onm(X) dx- 2 0'(1) nm(1) + An-+ OPn(1) 0. (1)
= 1x2 ¢b•(x)zp•(x) dx-2'¢bm(1)g'n(1)+ 4Am 2kn n(1)?krn(1), (186)

m ~ Am+ A,

which is obviously equivalent to

_ 2 OnIb (X) Om(X) dx

=0 1 , (X) 0, (x) dx + 2 (0'(1). (1)- O-m' ((1)2On(1))

An - Am
+4n + Am On (1)0',m(1)"

Finally, combining (181) with (187), we have

Am f j x2 0b,(x)4On(x) dx

= 2 0" (x) On(x) dx+2 (0' (1) Om(1) 0'(1)iOn(1))

+4 An - Am4 ) 0.(1) (187)
An + Am
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which is easily rewritten as

A , _ 1 • X ' 0 ." ( x ) 0 , ( x ) a

n- A
"+4 An _Am n (1) O)m(1),

An +Am

or

2 A , _ ( (1 ) V (1 ))

Am - An

4 An (188)

An + Am n(1) (l)

We finally rewrite (188) as (180) using Corollary 9.2. 0
The following theorem is an immediate consequence of combining the preceding theorem
with equation (184) from its proof.

Theorem 9.6 Suppose that c is real and positive, and that the integers m and n are
non-negative. If m i n (mod 2), then

I x 2O'W(x) O'(x) dx = 0. (189)

If m =n (mod 2) and m i4 n,

f Ox2 ¢(x) 0 (x) dx

2An
2 2On'(1) oV'(1) + (Am A(On'(1) Om (1) - Om' (1) On(M) (190)

An - A m2Am

= 2 m (1) On (1) ( Am-m AnXn -c2)" (192)

Theorem 9.7 Suppose that c is real and positive, and that the integers m and n are
non-negative. If m :An (mod 2), then

0,(x) 0" (x) dx= x2 On(X) m(x) dx = 0 (193)
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0

If m n (mod 2) and m 4 n, then

fO 'b,(x) •x) dx

2_2An (0' (1) 0. (1) - On (1) 0¢'(1)) (194)

A2 A (X-Xm)Im(1)4'(1), (195)
1 2

/_i Cnx)erax)dx

_ 2 AmAn

_ 1 Am•AnA n2 (Xn - Xm) O 1m(1) On/(1), (197)

A2 -A2

where Xm, Xf E R are as defined in Theorem 26.

Proof. Identity (193) is obvious, since the functions j :are alternately even and odd.

In order to prove (194)-(197), we start with the expression

A2'"(x) = (On, t (e 1 .n(t) d _. (198)

Taking the inner product of (198) with 2/'m(x), we have

= C - A2  - A2  7n~t iiim~)eCtd)d

= cAm n t(Xn -X) Om (1) Ot n (1,(17

which we summarize as

j' x2'4b(x) erm(x) dx = 1 ALL ft._ !(x~zra(x) dx. (199)

1 C2 A2m -A

Swapping n, m, we rewrite (199) in the form of

- 1;n(x) Om(x) dx. (200)

= c2 An 2 n()e t m()d
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Combining (199) and (200), we get

d. = J "() On (x) dx. (201)

On the other hand, integrating the left side of (201) by parts, we have

f_ On(W 0. (x) dx

= -(1) 0-(1) - On-1)0-(- 1)-_ ¢'(n¢O(m
dxd

= 2'(1) 0. (1) - (On (1) 0'k(1) - On (1) 0'(-1))

+ J Vn(X)4',,(x) dx. (202)

We rewrite (202) in the form of

fin0(x) Onm(x) dx

- 2(0.(1) Om(1) -n,(1)0'(1))+J _• On(x) Om"(x) dx.

We combine (201) and (203) and get

A2 (fi j n '~(x) O"(x) dx

= n2(0' (1) Om (1) - On (1) Om'(1)). (203)

Since m 5 n, we easily rewrite (203) as (194). We obtain expression (196) by combin-
ing (200) and (194). The identities (195), (197) follow from (194), (196) immediately
due to Corollary 9.2. 0

Theorem 9.8 Suppose that c is real and positive, and that the integers m and n are
non-negative. Let

''n(Y) = jbn (x) dx . (204)

If n is odd and m is even, then

* j1 On,(t) Om (t) dt (205)

2 Am Anz c A2 + A2m Xn(1) XCrn(1) (206)

+ A2 2 I'm ) 1 O ?/,,(t) dt. (207)
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If m = n (mod 2), then

]?Pn(t)t¢m(t) dt . (208)

Proof. We start with the identity

(X) eicxt ¢,(t) dr. (209)

Integrating (209) with respect to x, we have

Y0
An j0 (x) dx

= o Y (jf' eicx Obn(t) dt) dx (210)
oJ.(t) fW eixct dx dt (211)

-] 1p(t)e'cyt dt-- f (t) dt (212)
e C 1 it % '

which we summarize as

11A. 'P.(Y) = S If' Ozn (t) e`Y~t dt - Sf ±' p(t) dt. (213)

Taking the inner product of (213) and em(Y), we obtain

AnJL f F.(y) 0.m(y) dy
1 1 1 dt

= f J V)(Y). (J I. 7p°(t) eCYt dt) dy
I I(11Vn()d)d (214)

11c L1~ ()-f_, )
= i A -tn(t) f ect 0,m(y) dy dt

1f1If 1 1 0.(t) adt. -f (y) dy (215)

Am 1 n (t),m(t)dt
lcf-l t_

-- O n(t) dr. - V ,n(y) dy, (216)
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which we summarize as

f1 ' b,(t) Onm(t) dt

i _ An IJn (t) 0,,m(t) dt

+ -(t)- dt -f . () ) (217)

Exchanging m with n, we convert (217) into
1 O mW OnW1

* -1 Am m(t)?,•(t) dt
•An

0 + -L 0n (t) dt" - n(Y) dy, (218)

and combining (217), (218), we get

An -iC ' (t (t)OmWt) dt- A7i c I m(t) 0P(t) dt
1 A An 1

= i-- Om Am(t) dt. 'if'On(t) dt

TM 1 t On (t) dt. e- W dr. (219)

Suppose that m is even and n is odd; then the first product in the right hand side of (219)
is zero, so

Anic jI (t)'iWm(t) dt- Am. c Tm(t) On(t) dt

-1 O ]k (t) dt ] Oma(t) dt, (220)

which is equivalent to

* J'I'n(t) V'(t) dt

-22

f m q~(t) On (t) dt

OAn i 22(t) dtJ - (t) dt, (221)
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or 
0

1

- (t -n, (t) dm(t)dt

A2 1 /4 i.)~~~mb 22

On the other hand, integrating the left side of (222) by parts, we obtain
_I m (t)t O (t) dt

Since the product 'rm(x) 'I,,(x) is an odd function when m n (mod 2), we rewrite (223)

as

1

= 2!T 1f'I j On(t)m dt J f m(t) dtf t (225)
4c _c i-

Onthe othebin dtiontertnhelfieof (222) and parts, impie obtat

Tmt On~t ic 0 %nt t . bnt r 25

or

=2IFn(i>qI~m(1) _ T,-) f(lk- 9n(t) dj om(t) dt, (226)•n1 fI 1

which is equivalent to

'fn •(t) On (t) dt

S1

_ 24~ n1)m1

A• + A2 ic I ?b'q(t) dt A km(t) dt. (227)
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Finally, combining (217) and (227), we have
_1• C(t) er(t) dt

2 Am20 = Ac +4 I(1) 'Im(1)n +

+ A2±A2 +, _1 j O(t) dt. V'm(t) dt. (228)

Equation (208) is easily proven since the product O ena(x) On(x) is an odd function when-
ever m = n (mod 2). 0

The above theorems do not use much of the detailed structure of the integral operators
of which the functions {fbj} are eigenfunctions. Thus many of them generalize easily to
the case of an operator L : L2 [0, 1] -- L 2 [0, 1] defined via the formula

L (V•)() = oK (xt) 0 (t) dr, (229)

for some function K: [0, 1] -+ C; the following theorem is an example of this.

Theorem 9.9 Let A1. A2 be two eigenvalues of the operator L defined by (229), that is,

fL K(xt) v/1(t) dt = AIVb(x), (230)

fo K(xt)V12(t)dt = A20 2(X). (231)

Then

A2  fx O (x) 0 2 (x) dx (232)

x0'(x) j1(x) dx

provided that neither A1 nor the denominator of the right hand side of (232) is zero.

Proof. Differentiating (230), (231) with respect to x, we get

j tK'(xt) 1(t) dt = AiV' (x), (233)

fo]tK'(xt) 0 2 (t) dt = A202'(x). (234)

Multiplying (233) by x 022(X), we have

* I X ' (X) 0 2 (X) = X f02 (X) j tK'(xt) 01 (t) dt. (235)
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Integrating on the interval [0, 1], we obtain

1r1 r1
A, fX (X)02 (x) dx -- X2(X) tK'(xt) 0,(t) dtdx (236)

Sft 1(t) jx K'(xt) 0 2 (x) dx dt. (237)

Renaming the variables of integration on the right hand side from x to t and vice versa,
we get

AjX'iofx)' 2 x) dx = j 1 x (X)j t K'(xt) 0 2 (t) dt dx. (238)0

Subhtituting (234) into (238), we obtain

Ajx'k'l(x)W¢ 2 (x) dx = A2 fx 1(X) 0'b(x)dx, (239)

from which (232) follows immediately, as does its caveat. 0

The following theorem establishes the relation between the norm of each function Obj
on [-1, 1] (which in this paper is taken to be one), and its norm on (-oo, oo).

Theorem 9.10 Suppose that c is real and positive, and that the integer n is non-
negative. Then

_ 2 2(x) dx= --. (240)
AUn

where gn is given by (21).

Proof.

Lt --(x) dx O (t) dt On (x) dx1.(x (1 = n• * (X- W
_ - O (t f s t). 4'n(x) dx dt

1 0

Yn

The following theorem extends Theorem (9.10) to any band-limited function with
band limit c. -
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Theorem 9.11 Suppose that c is real and positive, that the integer n is non-negative,
and that f :R -+ C is a band-limited function with band limit c. Then

J0 W(x) f(x) dx = On (x) f(x) dx. (241)
00 0n

Proof.

O~n(X) f (X) dx
00

00 -sin(c (x -t)) On(t) dt) f (x) dx

f 1 f- n~(t). ( 00 sin(c.( t)) f (x) dx)d
= f- On(t) f(t) dt.

Theorem 9.12 Suppose that c is real and positive, and that the integer n is non-
negative. Then

00AnOM () if -1<x <1,

00 ei•t0M(t)dt = m (242)
0, if x>1 or x<-1.

Proof. Since Om is an eigenfunction of the operator Q, defined in (19), and Aim is the
corresponding eigenvalue,

1 rI sin(c. (x - u))* i mn )m (t) -" - -.- X -Pme (u) du. (243)
7r -1 - u

Thus

J eixt V),(t) dt

1 - ei (t sin(c. (x- u)) Om (u) du dt (244)
]_jM foo 7 -1 X -- U

-1 Lt (I() (1 0 sin(c (x-u)) eixt dt) du (245)
Am -1 7r o0 X -- U
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Since the innermost integral is the orthogonal projection operator onto the space of
functions of band limit c on (-oo, oo), applied to the function ei"t, it follows that:

f00fiot era (t) dt

ex )if x>1 or x <-

VlJ '~(U) ({ if-x>1 o x<1 du (246)

On 1(u) e du, if -1<x<l,
= f- l (247)

f, if x>1 or x <-,

from which (242) follows immediately.

The following five theorems establish formulae for the derivatives of prolate functions
and their associated eigenvalues with respect to c.

Theorem 9.13 For all positive real c and non-negative integer m,
aA m _=Am 2 O2 (1) - 1(28

ac 2c

Proof. We start with

Am'45m(x) ei=x Om (t) dt (249)

Differentiating (249) with respect to c, we obtain

9AM O() + Am 19

)xteikm (t) dt+ eit a dt (250)

Multiplying by 0,a(x) on both sides of (250), and integrating on the interval [-1, 1], we
get

O a(x) a x) + Am 20'(x) dx (251)

- _ m(X) j- ixteit Om•(t) dt dx

+ 0"k(x)) eict a m (t) dt dx,
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which we rewrite as

c-- + AmJ 190(X) ? m (x) dx

* - Jit 5m(t)J eicxt x 0,(x) dx dt

+ j_ et km(x) dx dt (252)

- Am f itkm(t) 1 at dt.-i i c 8t
+Afl aocm(t)

+ Am] '4m(t) dt, (253)

which we summarize as
aAm Am f'qm(t)

m t Am t )ikm(t) dt. (254)
SDc c -i at

On the other hand, integrating the right-hand side of (254) by parts, we have

6D aom (t)
t I)m (t) a dt (255)

1 at

= ¢2(1) + 02 (_j) - m(t) at dt,

which we rewrite as
f lacr(t) 02t Omn(t) -at dt = (1) 1 (256)
1- at--2

Finally, substituting (256) into (254), we get

ac = Am m2c (257)

Theorem 9.14 For any positive real c and non-negative integer m,

a/Lm 2 2
= -nJn() • (258)

ac c
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Proof. We start with the identity

2c-Im = -Am Am. (259)

Differentiating (259) with respect to c, we get

0rn 2c TAm ± a Am + -Am. (260)O5c- = -Ir Am -jý c 7r

Substituting Lemma 9.13 into (260), we get

9IM 2c 2¢m(1)- 1 2-
2Am- +-AmiAm (261)

ac 7r 2c 7r
V2 ¢(1)- _ 1

2c c
2 2 1 1= 2-/1. )2(1)--• +-1
C C c

= 2-m 2V(1) (262)

C

The following theorem immediately follows from Theorems 9.13 and 9.14.

Theorem 9.15 For all positive real c and non-negative integer m, n,

Am•' Am 1 (2m(1)_ 2(1))(23

An An C(m _,O (263)

('• - -' (02 (1) -- V)2(1)) (264)
-Y-n Pn c n

Theorem 9.16 Suppose that c is real and positive, and the integers m, n are non-
negative. If m 0 n, then

Sl20 2 AnAm
rma(t) y-(t) dt -- - am(l) fn(l) • (265)

If m = n, then

(t) Žt) (t) dt = 0. (266)
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Proof. Since the norm of On on [-1, 1] remains constant as c varies, 'On must be orthog-
onal on [-1, 1] to its own derivative with respect to c, which immediately yields (266).
To establish (265), we start with the identity

SA.0. (x) =] eicxt On(t) dt. (267)

Differentiating (267) with respect to c, we get

4a W(x) + A, a--

0 1 (ixteicxt n(t) + e' a t) dt. (268)

Multiplying both sides of (268) by 0ra(x) and integrating with respect to x, we have

*A £?,b m(X) dx
Af-'-1 ac

- f x0',(X)Om(X) dx + Amn 1m(t) (t dt, (269)

which, using (176), we rewrite as

(An- Am) 1 Om(t) ac dt

An Am (20 m.(1) 0. (1) - :mn). (270)

c Am+ An

Assuming that m • n, and dividing by An - Am, we then get (265). El

Theorem 9.17 Suppose that c is real and positive, and the integer m is non-negative.
Then

aXm = 2c] x 2 m()W (271)
ac

Proof. Due to Theorem 2.6,
(1 - x2)011() - 2x¢4(x) + (Xm - c2x2) era(x) = 0. (272)

Making the infinitesimal changes c = c + h, Xm = Xm + E, and erm(x) = 4m(X) + 6(x),
this becomes

(1 - x2) (?b(x) + y"(x)) - 2x. (V' (x) + J'(x))

+ (Xm + e - (c + h)2X2)• ('bm(X) + 6(X)) = 0. (273)
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Expanding each term, discarding infinitesimals of the second order or greater (that is,
products of two or more of the quantities h, e, and 6(x)), and subtracting (272), we get

(1 - x2 ) j"(x) - 2x6'(x) + (Xm - c2x') 5(x) + (6 - 2chx 2 )0m(X) = 0. (274)

Let the self-adjoint differential operator L be defined by the formula

L(f)(x) = (1 - x2 )f"(x) - 2xf'(x) + (Xm - c2x2)f(x). (275)

Then, multiplying (274) by ?km(x)/h and integrating on [-1, 1], we get

J(x) 0c m(x) dx+ - f 2cx2¢(x) = 0. (276)
1

Now ax-.o In addition, since L is self-adjoint,

I-i(x- - (x) dx (-1 xc L( b)(x) dx. (277)

But due to (272), L(V'm)(x) 0 for all x E [-1,1], so the integral (277) is zero:
Thus (276) becomes

aXr- 2c J x2IV(x). (278)

09C

10 Generalizations and Conclusions

In this paper, we design quadrature rules for band-limited functions, based on the prop-
erties of Prolate Spheroidal Wave Functions (PSWFs), and the connections of the latter
with certain fundamental integral operators (see (17), (19) in Section 2.5). The quadra-
tures are a surprisingly close analogue for band-limited functions of Gaussian quadratures
for polynomials, in that they have positive weights, are optimal in the appropriately de-
fined sense, and their nodes, when used for approximation (as opposed to integration),
result in extremely efficient interpolation formulae. Thus, Sections 5-7 of this paper can
be viewed as reproducing for band-limited functions much of the standard polynomial-
based approximation theory (for which see, for example, [24]). Generally, there is a
striking analogy between the band-limited functions and polynomials.

Obviously, there are certain differences between the resulting apparatus and the stan-
dard numerical analysis. To start with, where the classical techniques are optimal for
polynomials, the approach of this paper is optimal for band-limited functions; whenever
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the functions to be dealt with are naturally represented by trigonometric expansions on
finite intervals, our quadrature and interpolation formulae tend to be more efficient than
those based on the polynomials. When the functions to be dealt with are naturally rep-
resented by polynomials, the classical approach is more efficient; however, many physical
phenomena involve bend-limited functions, and very few involve polynomials.

Qualitatively, the quadrature (and interpolation) nodes obtained in this paper behave
like a compromise between the Gaussian nodes and the equispaced ones: near the middle
of the interval, they are very nearly equispaced,. and near the ends, they conc entrate
somewhat, but much less than the Gaussian (or Chebychev) nodes do. For large c, the
distance between nodes near the ends of the interval is of the order 1 , with the total
number of nodes close to ~.In contrast, the distance between the Gaussian nodes near
the ends of the interval is of the order 9,with n the total number of nodes. A closely
related phenomenon is the reduced norm of the differentiation operator based on the
prolate expansions: for an n-point differentiation formula, the norm is of the order n 3/ 2 )

*as opposed to n 2 for polynomial-based spectral differentiation. Thus, PSWFs are likely
to be a better tool for the design of spectral and pseudo-spectral techniques than the
orthogonal polynomials and related functions.

Much of the analytical apparatus we use was developed more than 30 years ago
(see [20]-[21], [17], [18]); the fundamental importance of these results in certain areas of
electrical engineering and physics has also been understood for a long time. However,
there appears to have been no prior attempt made to view band-limited functions as a
source of numerical algorithms. Generally, there is a fairly limited amount of information
in the literature about the PSWFs, especially when compared to the wealth of facts on
many other special functions. Section 9 of this paper is an attempt to remedy this

* situation to a small degree.
The apparatus built in this paper is a strictly one-dimensional one. Obviously, one

can construct discretizations of rectangles, cubes, etc. by using direct products of one-
dimensional grids; the resulting numerical algorithms are satisfactory but not optimal.
Furthermore, representation of band-limited functions on regions in higher dimensions

* is of both theoretical and engineering interest. Obvious applications include seismic
data collection and processing, antenna theory, NMR imaging, and many others. When
the region of interest is a sphere, most of the necessary analytical apparatus can be
found in [21]. At the present time, we have constructed and implemented somewhat
rudimentary versions of the relevant numerical algorithms; we are conducting numerical

* experiments with these, and will report the results at a later date. A much more difficult
set of questions is presented by the structure of band-limited functions on more general

regions.
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Table 1: Quadrature performance for varying band limits, for - 10-'

c n Maximum Errors Npol
Roots Refined

10.0 9 0.96E-05 0.51E-07 13
20.0 13 0.17E-04 0.94E-07 19
30.0 17 0.12E-04 0.50E-07 25
40.0 20 0.70E-05 0.30E-06 31
50.0 24 0.35E-05 0.83E-07 37
60.0 27 0.25E-04 0.27E-06 43
70.0 31 0.11E-04 0.66E-07 48
80.0 34 0.48E-05 0.17E-06 54
90.0 38 0.21E-05 0.40E-07 59

100.0 41 0.12E-04 0.91E-07 65
200.0 74 0.24E-05 0.86E-07 118
300.0 106 0.32E-05 0.21E-06 171 0
400.0 139 0.52E-05 0.62E-07 223
500.0 171 0.56E-05 0.88E-07 275
600.0 203 0.58E-05 0.11E-06 326
700.0 235 0.57E-05 0.12E-06 377
800.0 267 0.55E-05 0.13E-06 428

900.0 299 0.53E-05 0.14E-06 479
1000.0 331 0.50E-05 0.14E-06 530
1200.0 395 0.44E-05 0.13E-06 632
1400.0 459 0.38E-05 0.11E-06 734
1600.0 523 0.31E-05 0.97E-07 835 0

1800.0 587 0.28E-05 0.80E-07 937
2000.0 651 0.23E-05 0.64E-07 1038
2400.0 778 0.29E-05 0.15E-06 1240
2800.0 906 0.19E-05 0.84E-07 1442
4000.0 1288 0.37E-05 0.17E-06 2047 0

0
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Table 2: Quadrature performance for varying precisions, for c = 50

Sn Maximum Errors Npol
Roots Refined

0.10E-01 19 0.45E-01 O.1OE-01 30
O.1OE-02 20 0.70E-02 0.13E-02 32
0.10E-03 21 0.91E-03 0.14E-03 33
O.1OE-04 22 0.82E-04 0.13E-04 34
0.1OE-05 23 0.54E-04 0.11E-05 36
0.10E-06 24 0.35E-05 0.83E-07 37
0.1OE-07 25 0.33E-05 0.57E-08 38
0.1OE-08 26 0.18E-06 0.36E-09 39
0.1OE-09 26 0.18E-06 0.36E-09 40
0.1OE-10 27 0.17E-06 0.21E-10 42
0.1OE-11 28 0.79E-08 0.11E-11 43
0.1OE-12 29 0.78E-08 0.56E-13 45
O.1OE-13 30 0.31E-09 0.27E-14 55
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Table 3: Interpolation performance for varying band limits, for 6 = 10-7

c n Maximum Errors Npol
Roots Refined Cheb. Leg.

5.0 13 0.12E-06 0.12E-06 17 17
10.0 18 0.12E-06 0.13E-06 24 25
15.0 22 0.24E-06 0.25E-06 31 32
20.0 26 0.26E-06 0.28E-06 37 39
25.0 30 0.22E-06 0.23E-06 43 45
30.0 33 0.67E-06 0.73E-06 49 51
35.0 37 0.42E-06 0.46E-06 55 57
40.0 41 0.25E-06 0.27E-06 61 63
45.0 44 0.54E-06 0.60E-06 67 69
50.0 48 0.29E-06 0.33E-06 73 75

100.0 82 0.39E-06 0.46E-06 128 131
150.0 115 0.52E-06 0.64E-06 182 186
200.0 147 0.12E-05 0.15E-05 235 239
250.0 180 0.83E-06 0.11E-05 287 292
300.0 212 0.13E-05 0.17E-05 340 345
350.0 245 0.75E-06 0.1OE-05 392 398
400.0 277 0.1OE-05 0.14E-05 443 450
450.0 309 0.13E-05 0.18E-05 495 502
500.0 341 0.16E-05 0.22E-05 547 554

1000.0 662 0.16E-05 0.24E-05 1058 1068
1500.0 982 0.15E-05 0.25E-05 1566 1578
2000.0 1301 0.20E-05 0.35E-05 2072 2086
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Table 4: Interpolation performance for varying precisions, for c = 25

E n Maximum Errors Npoj
Roots Refined Cheb.T Leg.

0.1OE-01 21 0.38E-01 0.43E-01 31 34
0.1OE-02 23 0.37E-02 0.41E-02 34 36
0.1OE-03 25 0.29E-03 0.31E-03 37 39
0.1OE-04 26 0.74E-04 0.81E-04 39 41
0.1OE-05 28 0.44E-05 0.47E-05 41 43
0.10E-06 30 0.22E-06 0.23E-06 43 45
0.1OE-07 31 0.46E-07 0.49E-07 45 47
0.10E-08 32 0.95E-08 0.10E-07 47 49
0.1OE-09 34 0.36E-09 0.38E-09 49 51
0.1OE-10 35 0.67E-10 0.70E-10 51 52
0.1OE-11 37 0.21E-11 0.22E-11 53 54
0.1OE-12 38 0.36E-12 0.37E-12 54 56
0.1OE-13 39 0.59E-13 0.63E-13 98 61

Table 5: Quadrature nodes for band-limited functions, with c = 50 and e 10-7

This table contains only half of the nodes and weights, in particular those for which the
node is less than or equal to zero; reflecting these nodes around zero yields the remaining
nodes, the weight for the node at -x being the same as the weight for the node at x.

Node Weight
-. 9904522459960804E+00 0.2413064234922188E-01
-. 9525601106643832E+00 0.5024347217095568E-01
-. 8927960861459153E+00 0.6801787677830858E-01
-. 8186117530609125E+00 0.7952155999100788E-01
-. 7350624131965875E+00 0.8706680708376023E-01
-. 6452878027260844E+00 0.9216240765763570E-01
-. 5512554698695428E+00 0.9569254015486106E-01
-. 4542505281525226E+00 0.9817257766311556E-01
-. 3551568458127944E+00 0.9990914516102242E-01
-. 2546173463813596E+00 0.1010880172648715E+00
-. 1531287781860989E+00 0.1018214308931439E+00
-. 5110121484050418E-01 0.1021735189986602E±00
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Figure 2: Maximum norms of derivatives of prolate spheroidal wave functions for c = 200,
and of normalized Legendre polynomials
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Fast Mathematical Algorithms & Hardware Corporation

Ronald R. Coifman 1020 Sherman Avenue
Vladimir Rokhlin Hamden, CT 06514

USA (203) 248-8212
USA (203) 287-8765FAX

June 21, 2002

Defense Technical Information Center/OCP
8725 John J. Kingman Road, Suite 0944
Fort Belvoir, VA 22060-6218

Re: Contract #: F49620-98-C-0051

To Whom It May Concern:

In regard to the above referenced contract, due to typographical errors, would you please correct
the SF298 forms and the reports to read Contract #: F49620-98-C-0051, not F49620-97-C-0051.
I apologize for any inconvenience this may have caused.

If you have any questions please feel free to call at the above number or email fran@fmah.com

Sincerely yo rs,

Fraii Kearnn ,Business Manager
F.M.A.& H. Corporation


